Streptomyces griseus

Last updated

Streptomyces griseus
Streptomyces griseus.jpg
Spore arrangement in Streptomyces griseus. Grey spores arranged in straight chains, as is typical of these strains. [1] [2]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Streptomycetales
Family: Streptomycetaceae
Genus: Streptomyces
Species:
S. griseus
Binomial name
Streptomyces griseus
(Krainsky 1914)
Waksman and Henrici 1948
Synonyms
  • "Actinomyces acrimycini" Preobrazhenskaya et al. 1957
  • "Actinomyces fimicarius" Duché 1934
  • "Actinomyces globisporus subsp. flavofuscus" Kudrina 1957
  • "Actinomyces griseus" Krainsky 1914
  • "Actinomyces setonii" Millard and Burr 1926
  • Streptomyces acrimycini(Preobrazhenskaya et al. 1957) Pridham et al. 1958 (Approved Lists 1980)
  • Streptomyces argenteolusTresner et al. 1961 (Approved Lists 1980)
  • Streptomyces baarnensisPridham et al. 1958 (Approved Lists 1980)
  • Streptomyces caviscabiesGoyer et al. 1996
  • Streptomyces erumpensCalot and Cercós 1963 (Approved Lists 1980)
  • Streptomyces fimicarius(Duché 1934) Waksman and Henrici 1948 (Approved Lists 1980)
  • Streptomyces flavofuscus(Kudrina 1957) Preobrazhenskaya 1986
  • Streptomyces globisporus subsp. flavofuscus(Kudrina 1957) Pridham et al. 1958 (Approved Lists 1980)
  • Streptomyces setonii(Millard and Burr 1926) Waksman 1953 (Approved Lists 1980)

Streptomyces griseus is a species of bacteria in the genus Streptomyces commonly found in soil. A few strains have been also reported from deep-sea sediments. It is a Gram-positive bacterium with high GC content. Along with most other streptomycetes, S. griseus strains are well known producers of antibiotics and other such commercially significant secondary metabolites. These strains are known to be producers of 32 different structural types of bioactive compounds. Streptomycin, the first antibiotic ever reported from a bacterium, comes from strains of S. griseus. Recently, the whole genome sequence of one of its strains had been completed.

Contents

The taxonomic history of S. griseus and its phylogenetically related strains has been turbulent. S. griseus was first described in 1914 by Krainsky, who called the species Actinomyces griseus. [3] The name was changed in 1948 by Waksman and Henrici to Streptomyces griseus. The interest in these strains stems from their ability to produce streptomycin, a compound which demonstrated significant bactericidal activity against organisms such as Yersinia pestis (the causative agent of plague) and Mycobacterium tuberculosis (the causative agent of tuberculosis). Streptomycin was discovered in the laboratory of Selman Waksman, although his PhD student Albert Schatz probably did most of the work on these strains of bacteria and the antibiotic they produce. [4]

Taxonomy

Streptomyces is the largest genus of the Actinomycetota and is the type genus of the family Streptomycetaceae. [5] These are Gram-positive bacteria with high GC content [5] and are characterised by a complex secondary metabolism. [6] They produce over two-thirds of the clinically useful antibiotics of natural origin. [7] Streptomycetes are found predominantly in soil and in decaying vegetation, and most produce spores. Streptomycetes are noted for their distinct "earthy" odor which results from production of a volatile metabolite, geosmin. [6]

Like other streptomycetes, S. griseus has a high GC content in its genome, [8] with an average of 72.2%. [9] The species was first classified within the genus Streptomyces by Waksman and Henrici in 1948. [10] The taxonomy of S. griseus and its evolutionarily related strains have been a considerable source of confusion for microbial systematists. [2] 16S rRNA gene sequence data have been used to recognise the related strains, and are called S. griseus 16S rRNA gene clade. [2] The strains of this clade have homogeneous phenotypic properties [11] but show substantial genotypic heterogenecity based on genomic data. [12] Several attempts are still made to solve this issue using techniques such as DNA:DNA homology [2] and multilocus sequence typing. [13] [14] A whole genome sequence was carried out on the IFO 13350 strain of S. griseus. [9]

Physiology and morphology

S. griseus and its related strains have recently been shown to be alkaliphilic, i.e., they grow best at alkaline pH values. Although these organisms grow in a wide pH range (from 5 to 11), they show a growth optimum at pH 9. [10] They produce grey spore masses and grey-yellow reverse pigments when they grow as colonies. [2] The spores have smooth surfaces and are arranged as straight chains. [1]

Ecology

S. griseus strains have been isolated from various ecologies, including stell waste tips, [15] rhizosphere, [16] deep sea sediments [17] and coastal beach and dune sand systems. [10] Recent studies have indicated the strains of S. griseus might be undergoing ecology-specific evolution, giving rise to genetic variation with the specific ecology, termed ecovars. [13]

Antibiotic production

Interest in the genus Streptomyces for antibiotics came after the discovery of the antibiotic streptomycin in a S. griseus strain in 1943. [18] The discovery of streptomycin, an antituberculosis antibiotic, earned Selman Waksman the Nobel Prize in 1952. [19] The award was not without controversy, since it excluded the nomination of Albert Schatz, who is now recognized as one of the major co-inventors of streptomycin. [4] [20] [21] The strains of this species are now known to be rich sources of antibiotics and to produce 32 different structural types of commercially significant secondary metabolites. [22] [23] Furthermore, the genomic studies have revealed a single strain of S. griseus IFO 13350 has the capacity to produce 34 different secondary metabolites. [24]

Etymology

By 1943, Albert Schatz, a PhD student working in Selman Waksman’s laboratory, had isolated streptomycin from Streptomyces griseus (from the Greek strepto- ("twisted") + mykēs ["fungus"] and the Latin griseus, “gray”). [25]

The official New Jersey state microbe

S. griseus was designated the official New Jersey state microbe in legislation submitted by Senator Sam Thompson (R-12) in May 2017 and Assemblywoman Annette Quijano (D-20) in June 2017. [26] [27]

The organism was chosen because it is a New Jersey native that made unique contributions to healthcare and scientific research worldwide. A strain of S. griseus that produced the antibiotic streptomycin was discovered in New Jersey in “heavily manured field soil” from the New Jersey Agricultural Experimental Station by Albert Schatz in 1943. [28] Streptomycin is noteworthy because it is the first significant antibiotic discovered after penicillin, the first systemic antibiotic discovered in America, the first antibiotic active against tuberculosis, and the first-line treatment for plague. Moreover, New Jersey was the home of Selman Waksman, who was awarded the Nobel Prize in Physiology or Medicine for his systematic studies of antibiotic production by S. griseus and other soil microbes. [29]

The bill, S1729, was signed into law by NJ Governor Phil Murphy May 2019.

See also

Related Research Articles

<span class="mw-page-title-main">Streptomycin</span> Aminoglycoside antibiotic

Streptomycin is an antibiotic medication used to treat a number of bacterial infections, including tuberculosis, Mycobacterium avium complex, endocarditis, brucellosis, Burkholderia infection, plague, tularemia, and rat bite fever. For active tuberculosis it is often given together with isoniazid, rifampicin, and pyrazinamide. It is administered by injection into a vein or muscle.

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

<span class="mw-page-title-main">Selman Waksman</span> Ukraine Jewish-American biochemist, microbiologist, and Nobel Laureate (1888–1973)

Selman Abraham Waksman was a Jewish Ukrainian inventor, Nobel Prize laureate, biochemist and microbiologist whose research into the decomposition of organisms that live in soil enabled the discovery of streptomycin and several other antibiotics. A professor of biochemistry and microbiology at Rutgers University for four decades, he discovered several antibiotics, and he introduced procedures that have led to the development of many others. The proceeds earned from the licensing of his patents funded a foundation for microbiological research, which established the Waksman Institute of Microbiology located at the Rutgers University Busch Campus in Piscataway, New Jersey (USA). In 1952, he was awarded the Nobel Prize in Physiology or Medicine for "ingenious, systematic, and successful studies of the soil microbes that led to the discovery of streptomycin." Waksman and his foundation later were sued by Albert Schatz, one of his Ph.D. students and the discoverer of streptomycin, for minimizing Schatz's role in the discovery.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">Actinomycetales</span> Order of Actinomycota

The Actinomycetales is an order of Actinomycetota. A member of the order is often called an actinomycete. Actinomycetales are generally gram-positive and anaerobic and have mycelia in a filamentous and branching growth pattern. Some actinomycetes can form rod- or coccoid-shaped forms, while others can form spores on aerial hyphae. Actinomycetales bacteria can be infected by bacteriophages, which are called actinophages. Actinomycetales can range from harmless bacteria to pathogens with resistance to antibiotics.

<span class="mw-page-title-main">Albert Schatz (scientist)</span> American microbiologist and antibiotic discoverer (1920–2005)

Albert Israel Schatz was an American microbiologist and academic who discovered streptomycin, the first antibiotic known to be effective for the treatment of tuberculosis. He graduated from Rutgers University in 1942 with a bachelor's degree in soil microbiology, and received his doctorate from Rutgers in 1945. His PhD research led directly to the discovery of streptomycin.

<span class="mw-page-title-main">Streptomycetaceae</span> Family of bacteria

Streptomycetaceae is a family of Actinomycetota, making up the monotypic order Streptomycetales. It includes the important genus Streptomyces. This was the original source of many antibiotics, namely streptomycin, the first antibiotic against tuberculosis.

<i>Saccharopolyspora erythraea</i> Species of bacterium

Saccharopolyspora erythraea is a species of actinomycete bacteria within the genus Saccharopolyspora.

Streptomyces scabiei is a streptomycete bacterium species found in soils around the world. Unlike most of the 500 or so Streptomyces species it is a plant pathogen causing corky lesions to form on tuber and root crops as well as decreasing the growth of seedlings. Along with other closely related species it causes the potato disease common scab, which is an economically important disease in many potato growing areas. It was first described in 1892, being classified as a fungus, before being renamed in 1914 and again in 1948. Several other species of Streptomyces cause similar diseases to S. scabiei but other, more closely related species, do not.

Streptomyces avermitilis is a species of bacteria in the genus Streptomyces. This bacterium was discovered by Satoshi Ōmura in Shizuoka Prefecture, Japan.

Streptomyces acidiscabies is a streptomycete bacterium species, causing a scab disease of potatoes. Its type strain is RL-110.

Streptomyces thermocarboxydovorans is a streptomycete bacterium species. It is moderately thermophilic and carboxydotrophic, with type strain AT52.

Streptomyces thermocarboxydus is a streptomycete bacterium species. It is moderately thermophilic and carboxydotrophic, with type strain AT37.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

<i>Streptomyces antibioticus</i> Species of bacterium

Streptomyces antibioticus is a gram-positive bacterium discovered in 1941 by Nobel-prize-winner Selman Waksman and H. Boyd Woodruff. Its name is derived from the Greek "strepto-" meaning "twisted", alluding to this genus' chain-like spore production, and "antibioticus", referring to this species' extensive antibiotic production. Upon its first characterization, it was noted that S. antibioticus produces a distinct soil odor.

Streptomyces lavendulae is a species of bacteria from the genus Streptomyces. It is isolated from soils globally and is known for its production of medically useful biologically active metabolites. To see a photo of this organism click here.

Streptomyces sanglieri is a bacterium species from the genus of Streptomyces which has been isolated from soil from a hay meadow. Streptomyces sanglieri produces the antibiotic lactonamycin Z.

A state microbe is a microorganism used as an official state symbol. Several U.S. states have honored microorganisms by nominating them to become official state symbols. The first state to declare an Official State Microbe is Oregon which chose Saccharomyces cerevisiae as the Official Microbe of the State of Oregon in 2013 for its significance to the craft beer industry in Oregon. One of the first proponents of State Microbes was microbiologist Moselio Schaechter, who, in 2010, commented on Official Microbes for the American Society for Microbiology's blog "Small Things Considered" as well as on National Public Radio's "All Things Considered".

<span class="mw-page-title-main">Elizabeth Bugie</span> American biochemist

Elizabeth Bugie Gregory was an American biochemist who co-discovered Streptomycin, the first antibiotic against Mycobacterium tuberculosis in Selman Waksman laboratory at Rutgers University. Waksman went on to win the Nobel Prize for Medicine in 1952 and took the credit for the discovery.

William Hugh Feldman was a doctor of veterinary medicine known for "world-renowned achievement in two distinct fields, veterinary pathology and chemotherapy of experimental tuberculosis." He also made important contributions to the treatment of leprosy.

References

  1. 1 2 Amano, S; S. Miyadoh; T. Shomura. "Streptomyces griseus M-1027". Digital Atlas of Actinomycetes. Retrieved 2008-12-02.
  2. 1 2 3 4 5 Liu, Zhiheng; Shi, Yanlin; Zhang, Yamei; Zhou, Zhihong; Lu, Zhitang; Li, Wei; Huang, Ying; Rodríguez, Carlos; Goodfellow, Michael (2005). "Classification of Streptomyces griseus (Krainsky 1914) Waksman and Henrici 1948 and related species and the transfer of 'Microstreptospora cinerea' to the genus Streptomyces as Streptomyces yanii sp. nov". International Journal of Systematic and Evolutionary Microbiology. 55 (4): 1605–10. doi: 10.1099/ijs.0.63654-0 . PMID   16014489.
  3. Krainsky, A (1914). "Die Aktinomyceten und ihren Bedeutung in der Natur". Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II (in German). 41: 649–688.
  4. 1 2 Wainwright, M. (1991). "Streptomycin: discovery and resultant controversy". Journal of the History and Philosophy of the Life Sciences. 13: 97–124.
  5. 1 2 Kämpfer P (2006). "The Family Streptomycetaceae, Part I: Taxonomy". In Dworkin, M; et al. (eds.). The prokaryotes: a handbook on the biology of bacteria. Berlin: Springer. pp.  538–604. ISBN   0-387-25493-5.
  6. 1 2 Madigan M, Martinko J, eds. (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN   0-13-144329-1.[ page needed ]
  7. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000). Practical Streptomyces Genetics (2nd ed.). Norwich, England: John Innes Foundation. ISBN   0-7084-0623-8.[ page needed ]
  8. Paulsen, I.T. (1996). "Carbon metabolism and its regulation in Streptomyces and other high GC Gram-positive bacteria". Research in Microbiology. 147 (6–7): 535–41. doi:10.1016/0923-2508(96)84009-5. PMID   9084767.
  9. 1 2 "Streptomyces griseus IFO 13350 Genome". Archived from the original on 2016-03-03. Retrieved 2008-12-02.
  10. 1 2 3 Antony-Babu, Sanjay; Goodfellow, Michael (2008). "Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system". Antonie van Leeuwenhoek. 94 (4): 581–91. doi:10.1007/s10482-008-9277-4. PMID   18777141.
  11. Lanoot, Benjamin; Vancanneyt, Marc; Hoste, Bart; Vandemeulebroecke, Katrien; Cnockaert, Margo C.; Dawyndt, Peter; Liu, Zhiheng; Huang, Ying; Swings, Jean (2005). "Grouping of streptomycetes using 16S-ITS RFLP fingerprinting". Research in Microbiology. 156 (5–6): 755–62. doi: 10.1016/j.resmic.2005.01.017 . PMID   15950131.
  12. Lanoot, Benjamin; Vancanneyt, Marc; Dawyndt, Peter; Cnockaert, Margo; Zhang, Jianli; Huang, Ying; Liu, Zhiheng; Swings, Jean (2004). "BOX-PCR Fingerprinting as a Powerful Tool to Reveal Synonymous Names in the Genus Streptomyces. Emended Descriptions are Proposed for the Species Streptomyces cinereorectus, S. Fradiae, S. Tricolor, S. Colombiensis, S. Filamentosus, S. Vinaceus and S. Phaeopurpureus". Systematic and Applied Microbiology. 27 (1): 84–92. doi:10.1078/0723-2020-00257. PMID   15053325.
  13. 1 2 Antony-Babu, Sanjay; Stach, James E. M.; Goodfellow, Michael (2008). "Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system". Antonie van Leeuwenhoek. 94 (1): 63–74. doi:10.1007/s10482-008-9246-y. PMID   18491216.
  14. Guo, Yinping; Zheng, Wen; Rong, Xiaoying; Huang, Ying (2008). "A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: Use of multilocus sequence analysis for streptomycete systematics". International Journal of Systematic and Evolutionary Microbiology. 58 (1): 149–59. doi: 10.1099/ijs.0.65224-0 . PMID   18175701.
  15. Graf, Ellen; Schneider, Kathrin; Nicholson, Graeme; Ströbele, Markus; Jones, Amanda L; Goodfellow, Michael; Beil, Winfried; s¨Ssmuth, Roderich D; Fiedler, Hans-Peter (2007). "Elloxazinones a and B, New Aminophenoxazinones from Streptomyces griseus Acta 2871†". The Journal of Antibiotics. 60 (4): 277–84. doi: 10.1038/ja.2007.35 . PMID   17456980.
  16. Goodfellow, M; Williams, S T (1983). "Ecology of Actinomycetes". Annual Review of Microbiology. 37: 189–216. doi:10.1146/annurev.mi.37.100183.001201. PMID   6357051.
  17. Pathom-Aree, Wasu; Stach, James E. M.; Ward, Alan C.; Horikoshi, Koki; Bull, Alan T.; Goodfellow, Michael (2006). "Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench". Extremophiles. 10 (3): 181–9. doi:10.1007/s00792-005-0482-z. PMID   16538400.
  18. Newman, David J.; Cragg, Gordon M.; Snader, Kenneth M. (2000). "The influence of natural products upon drug discovery (Antiquity to late 1999)" (PDF). Natural Product Reports. 17 (3): 215–34. doi:10.1039/a902202c. PMID   10888010.
  19. Wallgren, A. "Presentation Speech: The Nobel Prize in Physiology or Medicine 1952". Nobel Prize Foundation. Retrieved 2008-12-02.
  20. Wainwright, M. (1990). Miracle Cure: The Story of Penicillin and the Golden Age of Antibiotics. Blackwell. ISBN   9780631164920 . Retrieved 2014-12-29.
  21. Pringle, Peter (2012). Experiment Eleven: Dark Secrets Behind the Discovery of a Wonder Drug. New York: Walker & Company. ISBN   978-1620401989.
  22. Strohl, William R (2004). "Antimicrobials". In Bull, Alan (ed.). Microbial diversity and bioprospecting. ASM publishers. pp. 136–155. ISBN   1-55581-267-8.
  23. Zhang, Lixin (2005). "Integrated Approaches for Discovering Novel Drugs From Microbial Natural Products". In Zhang, Lixin (ed.). Natural products drug discovery and therapeutic medicine . Humana Press. pp.  33–55. doi:10.1007/978-1-59259-976-9_2. ISBN   978-1-58829-383-1.
  24. Ohnishi, Yasuo; Ishikawa, Jun; Hara, Hirofumi; Suzuki, Hirokazu; Ikenoya, Miwa; Ikeda, Haruo; Yamashita, Atsushi; Hattori, Masahira; Horinouchi, Sueharu (2008). "Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350". Journal of Bacteriology. 190 (11): 4050–60. doi:10.1128/JB.00204-08. PMC   2395044 . PMID   18375553.
  25. Henry, Ronnie (March 2019). "Etymologia: Streptomycin". Emerg Infect Dis. 25 (3): 450. doi:10.3201/eid2503.et2503. PMC   6390759 . Retrieved October 17, 2021. Citing public domain text from the CDC.
  26. "New Jersey S3190 | 2016-2017 | Regular Session". LegiScan. Retrieved 2017-11-16.
  27. "New Jersey A4900 | 2016-2017 | Regular Session". LegiScan. Retrieved 2017-11-16.
  28. Schatz A, Bugie E, Waksman SE (1944). "Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria". Proceedings of the Society for Experimental Biology and Medicine. 55: 66–69.
  29. "The Nobel Prize in Physiology or Medicine 1952". www.nobelprize.org. Retrieved 2017-11-16.