Stygiella incarcerata

Last updated

Stygiella incarcerata
Stygiella incarcerata.jpg
Andalucia incarcerata
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Class: Jakobea
Order: Jakobida
Family: Stygiellidae
Genus: Stygiella
Species:
S. incarcerata
Binomial name
Stygiella incarcerata
Bernard, Simpson and Patterson 2000) Pánek, Tábosky and Čepička 2015 [1]
Synonyms
  • Jakoba incarcerataBernard, Simpson & Patterson 2000
  • Andalucia incarcerata(Bernard, Simpson & Patterson 2000) Lara et al. 2006

Stygiella incarcerata is a species of Excavata.

Taxonomy

Stygiella incarcerata was originally described to the genus Jakoba in 2000, but was moved to the newly created genus Andalucia in 2006. [2] It was transferred again to the new genus Stygiella in 2015. [1]

Related Research Articles

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<span class="mw-page-title-main">Percolozoa</span> Phylum of Excavata

The Percolozoa are a group of colourless, non-photosynthetic Excavata, including many that can transform between amoeboid, flagellate, and cyst stages.

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Metamonad</span> Phylum of excavate protists

The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. Their composition is not entirely settled, but they include the retortamonads, diplomonads, and possibly the parabasalids and oxymonads as well. These four groups are all anaerobic, occurring mostly as symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.

<span class="mw-page-title-main">Lobosa</span> Phylum of protozoans

Lobosa is a taxonomic group of amoebae in the phylum Amoebozoa. Most lobosans possess broad, bluntly rounded pseudopods, although one genus in the group, the recently discovered Sapocribrum, has slender and threadlike (filose) pseudopodia. In current classification schemes, Lobosa is a subphylum, composed mainly of amoebae that have lobose pseudopods but lack cilia or flagella.

<span class="mw-page-title-main">Bikont</span> Group of eukaryotes

A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled and multi-celled organisms are members of the group, and these, as well as the presumed ancestor, have two flagella.

<span class="mw-page-title-main">Transfer-messenger RNA</span>

Transfer-messenger RNA is a bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties. The tmRNA forms a ribonucleoprotein complex (tmRNP) together with Small Protein B (SmpB), Elongation Factor Tu (EF-Tu), and ribosomal protein S1. In trans-translation, tmRNA and its associated proteins bind to bacterial ribosomes which have stalled in the middle of protein biosynthesis, for example when reaching the end of a messenger RNA which has lost its stop codon. The tmRNA is remarkably versatile: it recycles the stalled ribosome, adds a proteolysis-inducing tag to the unfinished polypeptide, and facilitates the degradation of the aberrant messenger RNA. In the majority of bacteria these functions are carried out by standard one-piece tmRNAs. In other bacterial species, a permuted ssrA gene produces a two-piece tmRNA in which two separate RNA chains are joined by base-pairing.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes commonly known as telonemids. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes.

<span class="mw-page-title-main">Retaria</span> Phylum of single-celled organisms

Retaria is a clade within the supergroup Rhizaria containing the Foraminifera and the Radiolaria. In 2019, the Retaria were recognized as a basal Rhizaria group, as sister of the Cercozoa.

<i>Reclinomonas</i> Genus of basal eukaryotes

Reclinomonas is a monotypic genus of jakobid eukaryotes containing the single species Reclinomonas americana.

<i>Malawimonas</i> Genus of micro-organisms

Malawimonas is genus of unicellular, heterotrophic flagellates with uncertain phylogenetic affinities. They have variably being assigned to Excavata and Loukozoa. Recent studies suggest they may be closely related to the Podiata.

<span class="mw-page-title-main">Jakobid</span>

Jakobids are an order of free-living, heterotrophic, flagellar eukaryotes in the supergroup Excavata. They are small, and can be found in aerobic and anaerobic environments. The order Jakobida, believed to be monophyletic, consists of only twenty species at present, and was classified as a group in 1993. There is ongoing research into the mitochondrial genomes of jakobids, which are unusually large and bacteria-like, evidence that jakobids may be important to the evolutionary history of eukaryotes.

<i>Acrasis rosea</i>

Acrasis rosea is a species of slime mold within the heterolobosea.

<i>Histiona</i>

Histiona is a genus of Excavata.

<i>Jakoba</i> Genus of Eukaryotic Organisms

Jakoba is a genus in the taxon Excavata, and currently has a single described species, Jakoba libera described by Patterson in 1990, and named in honour of Dutch botanist Jakoba Ruinen.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

Andalucia is a genus of jakobids, currently containing the sole species A. godoyi.

Ancoracysta is a genus of eukaryotic microbes containing the species Ancoracysta twista, a predatory protist that appears to be related to Haptista.

Stygiella /ˌstɪ.d͡ʒiˈɛ.lə/ is a genus of free-living marine flagellates belonging to the family Stygiellidae in the jakobids (excavata).

<span class="mw-page-title-main">Stygiellidae</span> Family of saltwater protists

Stygiellidae is a family of free-living marine flagellates belonging to the order Jakobida, a deep-branching lineage within the eukaryotic supergroup Discoba. They are unicellular organisms that commonly inhabit anoxic, sulfide-rich and ammonium-rich marine habitats worldwide.

References

  1. 1 2 Pánek, et al. (18 November 2015). "Combined culture-based and culture-independent approaches provide insights into diversity of jakobids, extremely plesiomorphic eukaryotic lineage". Frontiers in Microbiology. 6: 1288. doi: 10.3389/fmicb.2015.01288 . PMC   4649034 . PMID   26635756.
  2. Lara E, Chatzinotas A, Simpson AG (2006). "Andalucia (n. gen.)--the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil". J. Eukaryot. Microbiol. 53 (2): 112–20. doi:10.1111/j.1550-7408.2005.00081.x. PMID   16579813. S2CID   19092265.