Sugarcane mosaic virus

Last updated
Sugarcane mosaic virus
5384842-PPT.jpg
Symptoms of sugarcane mosaic virus
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Stelpaviricetes
Order: Patatavirales
Family: Potyviridae
Genus: Potyvirus
Species:
Sugarcane mosaic virus
Strains
  • Abaca mosaic virus [1]
Synonyms
  • Grass mosaic virus
  • Maize dwarf mosaic virus strain B
  • Sorghum red stripe virus

Sugarcane mosaic virus (SCMV) is a plant pathogenic virus of the family Potyviridae . The virus was first noticed in Puerto Rico in 1916 and spread rapidly throughout the southern United States in the early 1920s. [2] SCMV is of great concern because of the high economic impact it has on sugarcane and maize.

Contents

Hosts

Sugarcane mosaic virus causes mosaic symptoms in sugarcane, maize, sorghum, and other poaceous plants. [3] In sugarcane, this is the most widespread virus and 21 strains of it have been found in the United States. [3] The SCMV complex has been shown to consist of four distinct potyviruses and includes strains of Johnsongrass mosaic virus (JGMV), maize dwarf mosaic virus (MDMV), sorghum mosaic virus (SrMV), and SCMV. [4]

Vectors

The aphid Myzus persicae was first found to vector SCMV from sorghum to sorghum by Anzalone 1962. [5]

Symptoms

Symptoms of sugarcane mosaic virus include intense mottling throughout the laminar region of the plant, characterized by discoloration of the plants leaves, and growth stunting. [6] In maize, the infection occurs first in the youngest leaves with symptoms such as irregular, light or dark green mosaic coloring developing along the veins. The virus can result in severe yield loss of the infected host and the disease eventually leads to necrosis. [7] Diagnosis of sugarcane mosaic virus is achieved first through recognizing the typical light green mosaic pattern of the infection, electron microscopy of leaf dips, as well as virus isolation and purification methods. One diagnosis technique being studied is the next-generation sequencing method (NGS) or sap inoculation, which was found to have a 90% success rate in a 2011 study. NGS could allow quick assessment of disease and be used for routine diagnosis against potential disease-causing agents. [8]

Management

The disease is spread through sap containing the virus and can be transferred to other areas mostly by mechanical means such as lawn mowers and other equipment. [7] To minimize spread of sugarcane mosaic virus all equipment used should be sanitized. Fungicides and other pesticides have been shown to be ineffective when dealing with viral disease. The best way to deal with a viral disease is through plant host resistance. [7] The leading management tool has been to transform viral genes into maize plants, but transgenic plants have increasingly raised concerns for their potential negative ecological effects, such as reversal of silencing by viral suppressors, complementation, synergy, and gene flow among closely related organisms. [9] Resistant strains have been utilized to control the virus in southern United States and tropical regions; however, these strains have not been able to be adapted in cooler conditions present in central and north-west Europe. [10]

Importance

The family Potyviridae, which includes approximately 200 species of economically important plant viruses, causes significant losses in agricultural, pasture, horticultural and ornamental crops. [2] Sugarcane mosaic virus is one of the largest and most economically important plant viruses due to its wide host range. In the mid-1920s, epidemics of the disease nearly collapsed the sugarcane industry in Argentina, Brazil, Cuba, and southern United States. [6] In Australia, losses have been reported between SCMV causes major problems in most of the sugarcane growing countries and many varieties have gone out of cultivation due to yield losses of up to 50%. [11] SCMV has also had a high incidence rate on maize being grown in China, the second largest maize producing country in the world. The virus, particularly maize dwarf mosaic disease caused by SCMV, has been among the most damaging diseases affecting maize production in China due to the large affect it has on yield. [9] The high incidence of co-infection and the occurrence of new strains or genome variations indicate that SCMV will continue to be a threat to industry.

Related Research Articles

<span class="mw-page-title-main">Leaf spot</span> Type of area of a leaf

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<i>Brome mosaic virus</i> Species of virus

Brome mosaic virus (BMV) is a small, positive-stranded, icosahedral RNA plant virus belonging to the genus Bromovirus, family Bromoviridae, in the Alphavirus-like superfamily.

<i>Lettuce mosaic virus</i> Species of virus

Lettuce mosaic virus (LMV) is a typical potyvirus, which causes one of the major virus diseases of lettuce crops worldwide.

<i>Potyvirus</i> Genus of positive-strand RNA viruses in the family Potyviridae

Potyvirus is a genus of positive-strand RNA viruses in the family Potyviridae. Plants serve as natural hosts. Like begomoviruses, members of this genus may cause significant losses in agricultural, pastoral, horticultural, and ornamental crops. More than 200 species of aphids spread potyviruses, and most are from the subfamily Aphidinae. The genus contains 190 species and potyviruses account for about thirty percent of all currently known plant viruses.

<i>Alfalfa mosaic virus</i> Species of virus

Alfalfa mosaic virus (AMV), also known as Lucerne mosaic virus or Potato calico virus, is a worldwide distributed phytopathogen that can lead to necrosis and yellow mosaics on a large variety of plant species, including commercially important crops. It is the only Alfamovirus of the family Bromoviridae. In 1931 Weimer J.L. was the first to report AMV in alfalfa. Transmission of the virus occurs mainly by some aphids, by seeds or by pollen to the seed.

Sporisorium reilianum Langdon & Full., (1978), previously known as Sphacelotheca reiliana, and Sporisorium reilianum, is a species of biotrophic fungus in the family Ustilaginaceae. It is a plant pathogen that infects maize and sorghum.

<span class="mw-page-title-main">Barley yellow mosaic virus</span> Species of virus

Barley yellow mosaic virus is plant pathogenic virus that causes the yellow mosaic disease of barley. Its shape is categorized as being flexuous filamentous, with lengths of 275 and 550 nanometers. The virus has a limited host range, and barley appears to be the only known susceptible host. The virus is transmitted via Polymyxa graminis, which is a plasmodiophorid protist, through the resting spores that survive in the soil, and eventually zoospores. Eastern Asia is the most affected region, but the virus can be found worldwide. Current agricultural practices have been ineffective at eliminating the virus, but breeding resistance appears to be the only way to help reduce the disease.

Barley stripe mosaic virus (BSMV), of genus Hordevirus, is an RNA viral plant pathogen whose main hosts are barley and wheat. The common symptoms for BSMV are yellow streaks or spots, mosaic, leaves and stunted growth. It is spread primarily through infected seed and can be spread through mechanical transfer of an infected and uninfected host. Plants infected with BSMV are more symptomatic in warmer temperatures. Resistant hosts and sterilization of equipment are the best ways to control the spread of the pathogen. BSMV has been known to reduce the yields of barley by up to 25%, but is not a major problem because of resistant varieties of barley.

<i>Maize dwarf mosaic virus</i> Species of plant pathogenic virus

Maize dwarf mosaic virus (MDMV) is a pathogenic plant virus of the family Potyviridae. Depending on the corn plant’s growth stage, the virus can have severe implications to the corn plant’s development which can also result in economic consequences to the producer of the crop.

Panicum mosaic virus (PMV) is a positive-sense single-stranded RNA viral pathogen that infects plant species in the panicoid tribe of the grass family, Poaceae. The pathogen was first identified in Kansas in 1953 and most commonly causes disease on select cultivars of turf grass, switchgrass, and millet. The disease most commonly associated with the panicum mosaic virus pathogen is St. Augustine Decline Syndrome, which infects species of turf grass and causes chlorotic mottling. In addition to St. Augustine Decline, panicum mosaic virus is responsible for chlorotic streaking and mild green mosaicking in select cultivars of switchgrass and millet.

<i>Wheat streak mosaic virus</i> Species of virus

Wheat streak mosaic virus (WSMV) is a plant pathogenic virus of the family Potyviridae that infects plants in the family Poaceae, especially wheat ; it is globally distributed and vectored by the wheat curl mite, particularly in regions where wheat is widely grown. First described in Nebraska in 1922, stunted growth and the eponymous “streaks” of yellowed, non-uniform discoloration are characteristic of WSMV infection. As it has been known to cause 100% crop mortality, WSMV is a subject of ongoing scientific research.

Soil-borne wheat mosaic virus is a rod-shaped plant pathogen that can cause severe stunting and mosaic in susceptible wheat, barley and rye cultivars. The disease has often been misdiagnosed as a nutritional problem, but this has actually allowed in part for the fortuitous visual selection by breeding programs of resistant genotypes. Soil-borne wheat mosaic virus is part of the genus Furovirus. Members of this genus are characterized by rigid rod-shaped particles and positive sense RNA genomes consisting of two molecules that are packaged into separate particles that code for either replication, mobility, structure or defense against the host. The virus is spread by a fungal-like protist, Polymyxa graminis, whose asexual secondary and sexual primary cycles help the virus spread. The disease produces secondary symptoms from the root cell infection. The disease is a serious contributor to loss in crop yield.

<i>Soybean mosaic virus</i> Plant disease

Soybean mosaic virus (SMV) is a member of the plant virus genus Potyvirus. It infects mainly plants belonging to the family Fabaceae but has also been found infecting other economically important crops. SMV is the cause of soybean mosaic disease that occurs in all the soybean production areas of the world. Soybean is one of the most important sources of edible oil and proteins and pathogenic infections are responsible for annual yield losses of about $4 billion in the United States. Among these pathogens, SMV is the most important and prevalent viral pathogen in soybean production worldwide. It causes yield reductions of about 8% to 35%, but losses as high as 94% have been reported.

Sweet potato feathery mottle virus (SPFMV) is a member of the genus Potyvirus in the family Potyviridae. It is most widely recognized as one of the most regularly occurring causal agents of sweet potato viral disease (SPVD) and is currently observed in every continent except Antarctica. The number of locations where it is found is still increasing; generally, it is assumed that the virus is present wherever its host is. The virus has four strains that are found in varying parts of the world.

<i>Watermelon mosaic virus</i> Species of virus

Watermelon mosaic virus (WMV) also known as Marrow mosaic virus, Melon mosaic virus, and until recently Watermelon mosaic virus type 2 (WMV-2), is a plant pathogenic virus that causes viral infection in many different plants. The virus itself is referred to as Watermelon Mosaic Virus II or WMV-2 and is an isolate of the U.S. WMV-2 is a ssRNA positive strand virus that is part of the Potyviridae or Potyvirus clade. Like all RNA viruses, it contains a protein capsid which protects the inner viral RNA. First described on squash in Florida, WMV arose from a unique recombination of genetic material contributed by Soybean mosaic virus (SMV) and Bean common mosaic virus (BCMV) along with Peanut Stripe virus (PSV).

Maize lethal necrosis disease is a viral disease affecting maize (corn) predominantly in East Africa, Southeast Asia and South America, which was recognised in 2010. It is caused by simultaneous infection with two viruses, MCMoV and any of several Potyviridae.

Cassava brown streak virus is a species of positive-strand RNA viruses in the genus Ipomovirus and family Potyviridae which infects plants. Member viruses are unique in their induction of pinwheel, or scroll-shaped inclusion bodies in the cytoplasm of infected cells. Cylindrical inclusion bodies include aggregations of virus-encoded helicase proteins. These inclusion bodies are thought to be sites of viral replication and assembly, making then an important factor in the viral lifecycle. Viruses from both the species Cassava brown streak virus and Ugandan cassava brown streak virus (UCBSV), lead to the development of Cassava Brown Streak Disease (CBSD) within cassava plants.

The cardamom mosaic virus (CdMV) is a mosaic virus that affects the production of green cardamom (E. cardamomum). It is a member of the genus Macluravirus (recognized under the family Potyviridae by ICTV in 1988), and is transmitted through aphids (P.caladii) and infected rhizomes, the former in a non-persistent manner.

<i>Blueberry mosaic associated ophiovirus</i> Species of virus

The Blueberry mosaic associated ophiovirus (B1MaV) is a plant virus which infects blueberry plants, causing a discoloration of the leaves of the plants in a mosaic-like pattern. The disease is found in blueberry plants in many regions of North America, as well as South America, Europe, New Zealand, and South Africa. Within these regions the virus is most often found in high blueberry-yielding areas, but can be spread to other locations. Blueberry mosaic associatedophiovirus is one of seven species in the genus Ophiovirus. It is a member of the Aspiviridae family, in the Serpentovirales order, and in the Milnevircetes class. The Ophioviridae viruses are characterized by a flexible and elongated nucleocapsid that is composed mostly of filamentous structures and is helically symmetrical. It also has a non-enveloped protein capsid that is capable of coiling around itself allowing for a super-coiled structure and the helical symmetry. The virus has the potential to be symptomatic or asymptomatic within plants causing the display of symptoms in only a few plants, but the ability to transmit the virus unknowingly in many plants. B1MaV often remains asymptomatic for long periods of time after initial infection allowing for blind transmission.

Carrot virus Y (CarVY) is a (+)ss-RNA virus that affects crops of the carrot family (Apiaceae), such as carrots, anise, chervil, coriander, cumin, dill and parsnip. Carrots are the only known crop to be infected in the field. Infection by the virus leads to deformed roots and discolored or mottled leaves. The virus is spread through insect vectors, and is currently only found in Australia.

References

  1. "Sugarcane mosaic virus abaca mosaic strain (SCMVA0)[Overview]". Global Database. EPPO (European and Mediterranean Plant Protection Organization). 2001-02-04. Retrieved 2021-09-04.
  2. 1 2 Wu, Liuji; Zu, Xiaofeng; Wang, Shunxi; Chen, Yanhui (2012-12-01). "Sugarcane mosaic virus – Long history but still a threat to industry". Crop Protection. 42 (Supplement C): 74–78. doi:10.1016/j.cropro.2012.07.005.
  3. 1 2 Yang, Z. N.; Mirkov, T. E. (1997). "Sequence and Relationships of Sugarcane Mosaic and Sorghum Mosaic Virus Strains and Development of RT-PCR-Based RFLPs for Strain Discrimination". Phytopathology. 87 (9): 932–939. doi:10.1094/phyto.1997.87.9.932. PMID   18945064.
  4. Shukla, Dharma D.; Ward, C. W.; Brunt, A. A.; (CSIRO, Division of Biomolecular Engineering) (1994). The Potyviridae. Wallingford, Oxon, UK: CAB International. pp. 360–371/xii+516. ISBN   978-0-85198-864-1. OCLC   31649005. CABI ISC 19952304874.
  5. Long, W. H.; Hensley, S. D. (1972). "Insect Pests of Sugar Cane". Annual Review of Entomology . Annual Reviews. 17 (1): 149–176. doi:10.1146/annurev.en.17.010172.001053. ISSN   0066-4170.
  6. 1 2 B.E.L. Lockhart, M.J. Irey, J.C. Comstock. "Sugarcane Bacilliform Virus, Sugarcane Mild Mosaic Virus and Sugarcane Yellow Leaf Syndrome" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. 1 2 3 Harmon, Phil (2015-11-03). "Mosaic Disease of St. Augustinegrass Caused by Sugarcane Mosaic Virus". edis.ifas.ufl.edu. Retrieved 2017-10-22.
  8. Adams, I. P.; Miano, D. W.; Kinyua, Z. M.; Wangai, A.; Kimani, E.; Phiri, N.; Reeder, R.; Harju, V.; Glover, R. (2013-08-01). "Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya". Plant Pathology. 62 (4): 741–749. doi: 10.1111/j.1365-3059.2012.02690.x . ISSN   1365-3059.
  9. 1 2 Gan, Defang; Zhang, Jiao; Jiang, Haibo; Jiang, Tong; Zhu, Suwen; Cheng, Beijiu (2010-11-01). "Bacterially expressed dsRNA protects maize against SCMV infection". Plant Cell Reports. 29 (11): 1261–1268. doi:10.1007/s00299-010-0911-z. ISSN   0721-7714. PMID   20734050. S2CID   33489917.
  10. Melchinger, A. E.; Kuntze, L.; Gumber, R. K.; Lübberstedt, T.; Fuchs, E. (1998-06-01). "Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm". Theoretical and Applied Genetics. 96 (8): 1151–1161. doi:10.1007/s001220050851. ISSN   0040-5752. S2CID   23674240.
  11. Viswanathan, R.; Balamuralikrishnan, M. (2005-03-01). "Impact of mosaic infection on growth and yield of sugarcane". Sugar Tech. 7 (1): 61–65. doi:10.1007/BF02942419. ISSN   0972-1525. S2CID   33825861.