Genetically modified plant

Last updated

Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. Many plant cells are pluripotent, meaning that a single cell from a mature plant can be harvested and then under the right conditions form a new plant. This ability is most often taken advantage by genetic engineers through selecting cells that can successfully be transformed into an adult plant which can then be grown into multiple new plants containing transgene in every cell through a process known as tissue culture. [1]

Contents

Research

Much of the advances in the field genetic engineering has come from experimentation with tobacco. Major advances in tissue culture and plant cellular mechanisms for a wide range of plants has originated from systems developed in tobacco. [2] It was the first plant to be genetically engineered and is considered a model organism for not only genetic engineering, but a range of other fields. [3] As such the transgenic tools and procedures are well established making it one of the easiest plants to transform. [4] Another major model organism relevant to genetic engineering is Arabidopsis thaliana. Its small genome and short life cycle makes it easy to manipulate and it contains many homologs to important crop species. [5] It was the first plant sequenced, has abundant bioinformatic resources and can be transformed by simply dipping a flower in a transformed Agrobacterium solution. [6]

In research, plants are engineered to help discover the functions of certain genes. The simplest way to do this is to remove the gene and see what phenotype develops compared to the wild type form. Any differences are possibly the result of the missing gene. Unlike mutagenisis, genetic engineering allows targeted removal without disrupting other genes in the organism. [1] Some genes are only expressed in certain tissue, so reporter genes, like GUS, can be attached to the gene of interest allowing visualisation of the location. [7] Other ways to test a gene is to alter it slightly and then return it to the plant and see if it still has the same effect on phenotype. Other strategies include attaching the gene to a strong promoter and see what happens when it is over expressed, forcing a gene to be expressed in a different location or at different developmental stages. [1]

Ornamental

Suntory "blue" rose Blue Rose APPLAUSE.jpg
Suntory "blue" rose
Kenyans examining insect-resistant transgenic Bt corn Btcornafrica.jpg
Kenyans examining insect-resistant transgenic Bt corn

Some genetically modified plants are purely ornamental. They are modified for flower color, fragrance, flower shape and plant architecture. [8] The first genetically modified ornamentals commercialised altered colour. [9] Carnations were released in 1997, with the most popular genetically modified organism, a blue rose (actually lavender or mauve) created in 2004. [10] The roses are sold in Japan, the United States, and Canada. [11] [12] Other genetically modified ornamentals include Chrysanthemum and Petunia. [8] As well as increasing aesthetic value there are plans to develop ornamentals that use less water or are resistant to the cold, which would allow them to be grown outside their natural environments. [13]

Conservation

It has been proposed to genetically modify some plant species threatened by extinction to be resistant invasive plants and diseases, such as the emerald ash borer in North American and the fungal disease, Ceratocystis platani, in European plane trees. [14] The papaya ringspot virus (PRSV) devastated papaya trees in Hawaii in the twentieth century until transgenic papaya plants were given pathogen-derived resistance. [15] However, genetic modification for conservation in plants remains mainly speculative. A unique concern is that a transgenic species may no longer bear enough resemblance to the original species to truly claim that the original species is being conserved. Instead, the transgenic species may be genetically different enough to be considered a new species, thus diminishing the conservation worth of genetic modification. [14]

Crops

Genetically modified crops are genetically modified plants that are used in agriculture. The first crops provided are used for animal or human food and provide resistance to certain pests, diseases, environmental conditions, spoilage or chemical treatments (e.g. resistance to a herbicide). [16] The second generation of crops aimed to improve the quality, often by altering the nutrient profile. Third generation genetically modified crops can be used for non-food purposes, including the production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. [17]

There are three main aims to agricultural advancement; increased production, improved conditions for agricultural workers and sustainability. GM crops contribute by improving harvests through reducing insect pressure, increasing nutrient value and tolerating different abiotic stresses. Despite this potential, as of 2018, the commercialised crops are limited mostly to cash crops like cotton, soybean, maize and canola and the vast majority of the introduced traits provide either herbicide tolerance or insect resistance. [17] Soybeans accounted for half of all genetically modified crops planted in 2014. [18] Adoption by farmers has been rapid, between 1996 and 2013, the total surface area of land cultivated with GM crops increased by a factor of 100, from 17,000 square kilometers (4,200,000 acres) to 1,750,000 km2 (432 million acres). [19] Geographically though the spread has been very uneven, with strong growth in the Americas and parts of Asia and little in Europe and Africa. [17] Its socioeconomic spread has been more even, with approximately 54% of worldwide GM crops grown in developing countries in 2013. [19]

Food

The majority of GM crops have been modified to be resistant to selected herbicides, usually a glyphosate or glufosinate based one. Genetically modified crops engineered to resist herbicides are now more available than conventionally bred resistant varieties; [20] in the USA 93% of soybeans and most of the GM maize grown is glyphosate tolerant. [21] Most currently available genes used to engineer insect resistance come from the Bacillus thuringiensis bacterium. Most are in the form of delta endotoxin genes known as cry proteins, while a few use the genes that encode for vegetative insecticidal proteins. [22] The only gene commercially used to provide insect protection that does not originate from B. thuringiensis is the Cowpea trypsin inhibitor (CpTI). CpTI was first approved for use cotton in 1999 and is currently undergoing trials in rice. [23] [24] Less than one percent of GM crops contained other traits, which include providing virus resistance, delaying senescence, modifying flower colour and altering the plants composition. [18] Golden rice is the most well known GM crop that is aimed at increasing nutrient value. It has been engineered with three genes that biosynthesise beta-carotene, a precursor of vitamin A, in the edible parts of rice. [25] It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. [26] a deficiency which each year is estimated to kill 670,000 children under the age of 5 [27] and cause an additional 500,000 cases of irreversible childhood blindness. [28] The original golden rice produced 1.6μg/g of the carotenoids, with further development increasing this 23 times. [29] In 2018 it gained its first approvals for use as food. [30]

Biopharmaceuticals

Plants and plant cells have been genetically engineered for production of biopharmaceuticals in bioreactors, a process known as Pharming. Work has been done with duckweed Lemna minor , [31] the algae Chlamydomonas reinhardtii [32] and the moss Physcomitrella patens . [33] [34] Biopharmaceuticals produced include cytokines, hormones, antibodies, enzymes and vaccines, most of which are accumulated in the plant seeds. Many drugs also contain natural plant ingredients and the pathways that lead to their production have been genetically altered or transferred to other plant species to produce greater volume and better products. [35] Other options for bioreactors are biopolymers [36] and biofuels. [37] Unlike bacteria, plants can modify the proteins post-translationally, allowing them to make more complex molecules. They also pose less risk of being contaminated. [38] Therapeutics have been cultured in transgenic carrot and tobacco cells, [39] including a drug treatment for Gaucher's disease. [40]

Vaccines

Vaccine production and storage has great potential in transgenic plants. Vaccines are expensive to produce, transport and administer, so having a system that could produce them locally would allow greater access to poorer and developing areas. [35] As well as purifying vaccines expressed in plants, it is also possible to produce edible vaccines in plants. Edible vaccines stimulate the immune system when ingested to protect against certain diseases. Being stored in plants reduces the long-term cost as they can be disseminated without the need for cold storage, do not need to be purified, and have long term stability. Also being housed within plant cells provides some protection from the gut acids upon digestion; the cost of developing, regulating and containing transgenic plants is high, leading to most current plant-based vaccine development being applied to veterinary medicine, where the controls are not as strict. [41]

Related Research Articles

<span class="mw-page-title-main">Biotechnology</span> Use of living systems and organisms to develop or make useful products

Biotechnology is a multidisciplinary field that involves the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

<span class="mw-page-title-main">Genetically modified organism</span> Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms. Genes have been transferred within the same species, across species, and even across kingdoms. New genes can be introduced, or endogenous genes can be enhanced, altered, or knocked out.

<span class="mw-page-title-main">Genetic engineering</span> Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

<span class="mw-page-title-main">Genetically modified food</span> Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

Pharming, a portmanteau of "farming" and "pharmaceutical", refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming or biopharming.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may either retain the ability to produce RNA or protein in the transgenic organism or alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.

<span class="mw-page-title-main">Genetically modified food controversies</span> Controversies over GMO food

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

<span class="mw-page-title-main">Transplastomic plant</span>

A transplastomic plant is a genetically modified plant in which genes are inactivated, modified or new foreign genes are inserted into the DNA of plastids like the chloroplast instead of nuclear DNA.

Drought tolerance is the ability by which a plant maintains its biomass production during arid or drought conditions. Some plants are naturally adapted to dry conditions, surviving with protection mechanisms such as desiccation tolerance, detoxification, or repair of xylem embolism. Other plants, specifically crops like corn, wheat, and rice, have become increasingly tolerant to drought with new varieties created via genetic engineering. From an evolutionary perspective, the type of mycorrhizal associations formed in the roots of plants can determine how fast plants can adapt to drought.

<span class="mw-page-title-main">Plant genetics</span> Study of genes and heredity in plants

Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

<span class="mw-page-title-main">Genetically modified rice</span>

Genetically modified rice are rice strains that have been genetically modified. Rice plants have been modified to increase micronutrients such as vitamin A, accelerate photosynthesis, tolerate herbicides, resist pests, increase grain size, generate nutrients, flavors or produce human proteins.

<span class="mw-page-title-main">Genetically modified tomato</span>

A genetically modified tomato, or transgenic tomato, is a tomato that has had its genes modified, using genetic engineering. The first trial genetically modified food was a tomato engineered to have a longer shelf life, which was on the market briefly beginning on May 21, 1994. The first direct consumption tomato was approved in Japan in 2021. Primary work is focused on developing tomatoes with new traits like increased resistance to pests or environmental stresses. Other projects aim to enrich tomatoes with substances that may offer health benefits or be more nutritious. As well as aiming to produce novel crops, scientists produce genetically modified tomatoes to understand the function of genes naturally present in tomatoes.

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Cry1Ac</span> Crystal protein

Cry1Ac protoxin is a crystal protein produced by the gram-positive bacterium, Bacillus thuringiensis (Bt) during sporulation. Cry1Ac is one of the delta endotoxins produced by this bacterium which act as insecticides. Because of this, the genes for these have been introduced into commercially important crops by genetic engineering in order to confer pest resistance on those plants.

India and China are the two largest producers of genetically modified products in Asia. India currently only grows GM cotton, while China produces GM varieties of cotton, poplar, petunia, tomato, papaya and sweet pepper. Cost of enforcement of regulations in India are generally higher, possibly due to the greater influence farmers and small seed firms have on policy makers, while the enforcement of regulations was more effective in China. Other Asian countries that grew GM crops in 2011 were Pakistan, the Philippines and Myanmar. GM crops were approved for commercialisation in Bangladesh in 2013 and in Vietnam and Indonesia in 2014.

<span class="mw-page-title-main">DMH-11 Mustard</span> Genetically modified variety of mustard plant

Dhara Mustard Hybrid-11, otherwise known as DMH - 11, is a genetically modified hybrid variety of the mustard species Brassica juncea. It was developed by Professor Deepak Pental from the University of Delhi, with the aim of reducing India's demand for edible oil imports. DMH - 11 was created through transgenic technology, primarily involving the Bar, Barnase and Barstar gene system. The Barnase gene confers male sterility, while the Barstar gene restores DMH - 11's ability to produce fertile seeds. The insertion of the third gene Bar, enables DMH - 11 to produce phosphinothricin-N- acetyl-transferase, the enzyme responsible for Glufosinate resistance. This hybrid mustard variety has come under intense public scrutiny, mainly due to concerns regarding DMH - 11's potential to adversely affect the environment as well as consumer health. DMH - 11 was found not to pose any food allergy risks, and has demonstrated increased yields over existing mustard varieties. Conflicting details and results regarding the field trials and safety evaluations conducted on DMH - 11 have delayed its approval for commercial cropping.

References

  1. 1 2 3 Walter P, Roberts K, Raff M, Lewis J, Johnson A, Alberts B (2002). "Studying Gene Expression and Function". Molecular Biology of the Cell (4th ed.). Garland Science.
  2. Ganapathi TR, Suprasanna P, Rao PS, Bapat VA (2004). "Tobacco (Nicotiana tabacum L.) — A Model System for Tissue Culture Interventions and Genetic Engineering". Indian Journal of Biotechnology. 3: 171–184.
  3. Koszowski B, Goniewicz ML, Czogała J, Sobczak A (2007). "[Genetically modified tobacco--chance or threat for smokers?]" [Genetically modified tobacco--chance or threat for smokers?](PDF). Przeglad Lekarski (in Polish). 64 (10): 908–12. PMID   18409340. Archived from the original (PDF) on 2013-01-23. Retrieved 2018-12-24.
  4. Mou B, Scorza R (2011-06-15). Transgenic Horticultural Crops: Challenges and Opportunities. CRC Press. p. 104. ISBN   978-1-4200-9379-7.
  5. Gepstein S, Horwitz BA (1995). "The impact of Arabidopsis research on plant biotechnology". Biotechnology Advances. 13 (3): 403–14. doi:10.1016/0734-9750(95)02003-L. PMID   14536094.
  6. Holland CK, Jez JM (October 2018). "Arabidopsis: the original plant chassis organism". Plant Cell Reports. 37 (10): 1359–1366. doi:10.1007/s00299-018-2286-5. PMID   29663032. S2CID   4946167.
  7. Jefferson RA, Kavanagh TA, Bevan MW (December 1987). "GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants". The EMBO Journal. 6 (13): 3901–7. doi:10.1002/j.1460-2075.1987.tb02730.x. PMC   553867 . PMID   3327686.
  8. 1 2 "Biotechnology in Ornamental Plants - Pocket K". www.isaaa.org. Retrieved 2018-12-17.
  9. Chandler SF, Sanchez C (October 2012). "Genetic modification; the development of transgenic ornamental plant varieties". Plant Biotechnology Journal. 10 (8): 891–903. doi: 10.1111/j.1467-7652.2012.00693.x . PMID   22537268.
  10. Nosowitz D (15 September 2011). "Suntory Creates Mythical Blue (Or, Um, Lavender-ish) Rose". Popular Science. Retrieved 30 August 2012.
  11. "Suntory to sell blue roses overseas". The Japan Times. 11 September 2011. Archived from the original on 22 November 2012. Retrieved 30 August 2012.
  12. "World's First 'Blue' Rose Soon Available in U.S". Wired. 14 September 2011.
  13. "Green genetic engineering now conquers the ornamental plant market as well". www.biooekonomie-bw.de. Retrieved 2018-12-17.
  14. 1 2 Adams JM, Piovesan G, Strauss S, Brown S (2002-08-01). "The Case for Genetic Engineering of Native and Landscape Trees against Introduced Pests and Diseases". Conservation Biology. 16 (4): 874–79. doi:10.1046/j.1523-1739.2002.00523.x. S2CID   86697592.
  15. Tripathi S, Suzuki J, Gonsalves D (2007). "Development of Genetically Engineered Resistant Papaya for papaya ringspot virus in a Timely Manner: A Comprehensive and Successful Approach". Plant-Pathogen Interactions. Methods in Molecular Biology. Vol. 354. pp. 197–240. doi:10.1385/1-59259-966-4:197. ISBN   978-1-59259-966-0. PMID   17172756.
  16. Sarkar, Snehasish; Roy, Souri; Ghosh, Sudip K. (18 May 2021). "Development of marker-free transgenic pigeon pea (Cajanus cajan) expressing a pod borer insecticidal protein". Scientific Reports. 11 (1): 10543. Bibcode:2021NatSR..1110543S. doi:10.1038/s41598-021-90050-8. ISSN   2045-2322. PMC   8131364 . PMID   34007007.
  17. 1 2 3 Qaim, Matin (2016-04-29). "Introduction". Genetically Modified Crops and Agricultural Development. Springer. pp. 1–10. ISBN   9781137405722.
  18. 1 2 "Global Status of Commercialized Biotech/GM Crops: 2014 - ISAAA Brief 49-2014". ISAAA.org. Retrieved 2016-09-15.
  19. 1 2 ISAAA 2013 Annual Report Executive Summary, Global Status of Commercialized Biotech/GM Crops: 2013 ISAAA Brief 46-2013, Retrieved 6 August 2014
  20. Darmency H (August 2013). "Pleiotropic effects of herbicide-resistance genes on crop yield: a review". Pest Management Science. 69 (8): 897–904. doi:10.1002/ps.3522. PMID   23457026.
  21. Green JM (September 2014). "Current state of herbicides in herbicide-resistant crops". Pest Management Science. 70 (9): 1351–7. doi:10.1002/ps.3727. PMID   24446395.
  22. Fleischer SJ, Hutchison WD, Naranjo SE (2014). "Sustainable Management of Insect-Resistant Crops". Plant Biotechnology. pp. 115–127. doi:10.1007/978-3-319-06892-3_10. ISBN   978-3-319-06891-6.
  23. "SGK321". GM Approval Database. ISAAA.org. Retrieved 2017-04-27.
  24. Qiu J (October 2008). "Is China ready for GM rice?". Nature. 455 (7215): 850–2. doi: 10.1038/455850a . PMID   18923484.
  25. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (January 2000). "Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm". Science. 287 (5451): 303–5. Bibcode:2000Sci...287..303Y. doi:10.1126/science.287.5451.303. PMID   10634784. S2CID   40258379.
  26. Frist B (21 November 2006). "'Green revolution' hero". Washington Times. One existing crop, genetically engineered "golden rice" that produces vitamin A, already holds enormous promise for reducing blindness and dwarfism that result from a vitamin-A deficient diet.
  27. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. (January 2008). "Maternal and child undernutrition: global and regional exposures and health consequences". Lancet. 371 (9608): 243–60. doi:10.1016/S0140-6736(07)61690-0. PMID   18207566. S2CID   3910132.
  28. Humphrey JH, West KP, Sommer A (1992). "Vitamin A deficiency and attributable mortality among under-5-year-olds". Bulletin of the World Health Organization. 70 (2): 225–32. PMC   2393289 . PMID   1600583.
  29. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, et al. (April 2005). "Improving the nutritional value of Golden Rice through increased pro-vitamin A content". Nature Biotechnology. 23 (4): 482–7. doi:10.1038/nbt1082. PMID   15793573. S2CID   632005.
  30. "US FDA approves GMO Golden Rice as safe to eat". Genetic Literacy Project. 2018-05-29. Retrieved 2018-05-30.
  31. Gasdaska JR, Spencer D, Dickey L (March 2003). "Advantages of Therapeutic Protein Production in the Aquatic Plant Lemna". BioProcessing Journal. 2 (2): 49–56. doi:10.12665/J22.Gasdaska.
  32. (10 December 2012) "Engineering algae to make complex anti-cancer 'designer' drug" PhysOrg, Retrieved 15 April 2013
  33. Büttner-Mainik A, Parsons J, Jérôme H, Hartmann A, Lamer S, Schaaf A, et al. (April 2011). "Production of biologically active recombinant human factor H in Physcomitrella". Plant Biotechnology Journal. 9 (3): 373–83. doi: 10.1111/j.1467-7652.2010.00552.x . PMID   20723134.
  34. Baur A, Reski R, Gorr G (May 2005). "Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens". Plant Biotechnology Journal. 3 (3): 331–40. doi:10.1111/j.1467-7652.2005.00127.x. PMID   17129315.
  35. 1 2 Hammond J, McGarvey P, Yusibov V (2012-12-06). Plant Biotechnology: New Products and Applications . Springer Science & Business Media. pp.  7–8. ISBN   9783642602344.
  36. Börnke F, Broer I (June 2010). "Tailoring plant metabolism for the production of novel polymers and platform chemicals". Current Opinion in Plant Biology. 13 (3): 354–62. doi:10.1016/j.pbi.2010.01.005. PMID   20171137.
  37. Lehr F, Posten C (June 2009). "Closed photo-bioreactors as tools for biofuel production". Current Opinion in Biotechnology. 20 (3): 280–5. doi:10.1016/j.copbio.2009.04.004. PMID   19501503.
  38. "UNL's AgBiosafety for Educators". agbiosafety.unl.edu. Retrieved 2018-12-18.
  39. Protalix technology platform Archived 27 October 2012 at the Wayback Machine
  40. Gali Weinreb and Koby Yeshayahou for Globes 2 May 2012. "FDA approves Protalix Gaucher treatment Archived 29 May 2013 at the Wayback Machine "
  41. Concha C, Cañas R, Macuer J, Torres MJ, Herrada AA, Jamett F, Ibáñez C (May 2017). "Disease Prevention: An Opportunity to Expand Edible Plant-Based Vaccines?". Vaccines. 5 (2): 14. doi: 10.3390/vaccines5020014 . PMC   5492011 . PMID   28556800.