Lemna minor

Last updated

Lemna minor
Eendekroos dicht bijeen.JPG
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Alismatales
Family: Araceae
Genus: Lemna
Species:
L. minor
Binomial name
Lemna minor
L.

Lemna minor, the common duckweed [2] [3] or lesser duckweed, is a species of aquatic freshwater plant in the subfamily Lemnoideae of the arum family Araceae. [4] L. minor is used as animal fodder, bioremediator, for wastewater nutrient recovery, and other applications.

Contents

Description

Lemna minor is a floating freshwater aquatic plant, with one, two, three or four leaves each having a single root hanging in the water. As more leaves grow, the plants divide and become separate individuals. The root is 1–2 cm long. Leaves are oval, 1–8 mm long and 0.6–5 mm broad, light green, with three (rarely five) veins and small air spaces to assist flotation. It reproduces mainly vegetatively by division. Flowers are rarely produced and measure about 1 mm in diameter, with a cup-shaped membranous scale containing a single ovule and two stamens. The seed is 1 mm long, ribbed with 8-15 ribs. Birds are important in dispersing L. minor to new sites. The sticky root enables the plant to adhere to the plumage or feet of birds and can thereby colonize new ponds.[ citation needed ]

Distribution

Lemna minor has a subcosmopolitan distribution and is native throughout most of Africa, Asia, Europe and North America. It is present wherever freshwater ponds and slow-moving streams occur, except for arctic and subarctic climates. It is not reported as native in Australasia or South America, though it is naturalised there.[ citation needed ]

Cultivation

Colony on a small pool Dam with lemna minor.jpg
Colony on a small pool

For optimal growth conditions pH values between 6.5 and 8 are required. L. minor can grow at temperatures between 6 and 33 °C. Growth of colonies is rapid, and the plants form a carpet covering still pools when conditions are suitable. In temperate regions, when temperatures drop below 6 to 7 °C, small, dense, starch-filled organs called 'turions' are produced. The plants then become dormant and sink to the ground for overwintering. The following spring, they restart growing again and float back to the surface. [3] [5]

Duckweeds in general need some management effort to be cultivated. The small free floating plants are susceptible to being blown into heaps which results in open water surface allowing algal growth. For this reason, long narrow ponds running perpendicular to the prevailing wind are recommended. The equal distribution of added nutrients in the ponds can be achieved by several inlets. To maintain a dense cover of plants on the water surface and prevent a too thick layer for growth, coordinated harvesting and replenishment of nutrients are required. [6]

The fertilizer requirements for growing duckweed depend on the water source and the geographic isolate of L. minor that is used. [7] L. minor grown in ponds that are filled with rainwater, need an additional application of nitrogen, phosphorus and potassium. Total Kjeldahl Nitrogen should not drop below 20–30 mg/L if high growth rates and crude protein contents are to be maintained. Regarding phosphorus, good growth has been reported in concentrations between 6 and 154 mg/L (there is no notable sensitivity for high phosphorus concentrations on growth rates). [6] Effluents from domestic animal production have very high concentrations of ammonium and other minerals. They often need to be diluted to a balanced nutrient concentration. For the L. minor isolate 8627 cultivated in swine lagoon liquid, the best production rates were reached when grown in swine lagoon liquid diluted to 20% (Total Kjeldahl Nitrogen: 54 mg/L, Ammonium: 31 mg/L, Total Phosphorus: 16 mg/L). [8] Sewage water, which often has an adequate concentration of potassium and phosphorus, can be used to grow duckweed, but nitrogen concentrations need to be adjusted. [9]

Uses

Bioremediation

Lemna minor has been shown to remove heavy metals like lead, copper, zinc and arsenic very efficiently from waters with non-lethal concentrations. [10] One particular study found, that more than 70% of arsenic was removed after 15 days at initial concentration of 0.5 mg/L. [11] Another one says, that viable L. minor biomass removed 85-90% of Pb(NO3)2 with an initial concentration of 5 mg/L. Higher lead concentrations though result in a decrease in relative growth rate of L. minor. [12] Because L. minor is temperature tolerant, shows rapid growth and is easy to harvest, it bears high potential for the cost-efficient use in wastewater treatments. [12] The Devils Lake wastewater treatment, located in North Dakota, USA, utilizes these beneficial properties of L. minor and other aquatic plants in the treatment of municipal and industrial wastewater. [9] After a certain growing period, the plants are harvested and used as soil amendment, compost material or protein source for livestock. [9] [13] In industrial affected regions, where heavy metals accumulate in waters, soils and sediments due to anthropogenic activities like mining and burning of fossil fuels, the harvested L. minor should not be reused, but disposed accordingly. [13] [14] [15] Because heavy metals have carcinogenic effects in humans, [16] persist long in nature and accumulate in living organisms, their removal from the environment is important. [17] Lemna minor has also been shown to remove organic micropollutants such as pharmaceuticals [18] and benzotriazoles from wastewater. [19]

Livestock feed

Depending on the literature, different yields of L. minor are registered. Grown under ideal conditions, yields up to 73 tonnes dry matter per hectare and year were recorded. [20] Common duckweed has a high protein content varying from 20 to 40% depending on the season, the nutrient content of the water and environmental conditions. It doesn't build up very complex tissue structures and therefore has a low fiber content less than 5%. Basically all of its tissues can be used as fodder for fish and poultry and make duckweed an interesting food supplement. [13]

Experimental investigations have shown, that L. minor is able to completely replace the add-on of soy bean in the diet of ducks. It can be cultivated directly on the farm resulting in low production costs. Therefore, using common duckweed as a food supplement  in broiler diets is very profitable also from an economic point of view. [21] An investigation showed, that the expensive sesame oil cakes in chicken diets could partially be replaced by cheap L. minor with increased growth performance of broiler. Nevertheless, because of a lower content of digestible proteins in L. minor (68.9% compared to 89.9% in sesame oil cake), common duckweed could only be used as a food supplement in broiler diets. [22] Also when feeding lying hen partially with dried L. minor (up to 150 g/kg fodder), hen showed the same performance like when being fed with fish meal and rice polish, while the yolk colour was positively affected by the duckweed diet. [23]

Wastewater nutrient recovery

Lemna minor as fast growing, nitrogen and phosphorus accumulating aquatic plant with high nutritional value for livestock, finds another application in the nutrient recovery from livestock wastewater. [5] This application is known to be executed in farming systems in south east Asia, where manure and excremet are deposited in small eutrophic ponds. The water of those ponds then fertilizes bigger ponds on which L. minor is grown for the further use as fodder for ducks. [20]

Growing selected geographic isolates of L. minor on diluted swine lagoon liquid in North Carolina resulted in yields up to 28.5 g m−2 day−1 (104.03 t ha−1 y−1) and removal of over 85% of the total contained nitrogen and phosphorus.

Anaerobic pretreatment (e.g. through anaerobic digestion in a UASB) of the wastewater and dilution of the liquid to below 100 mg/L total Kjeldahl nitrogen and 50 mg/L total phosphorus, led to the best performance regarding growth and nutrient removal. [8] [24]

Cultivating L. minor in anaerobic pretreated wastewater is a low cost application, with the potential to improve domestic manure by producing valuable animal feed. Additionally, environmental pollution can be diminished through removal of nutrients from effluents. [25] [26] [27]

Biofuel

Lemna minor is very suitable for bioethanol production. Due to its low cellulose content (approximately 10%) compared to terrestrial plants, the conversion procedure of the starch to ethanol is relatively easy. [28] Grown in swine lagoon diluted water, L. minor accumulates 10.6% starch of total dry weight. Under ideal conditions in terms of phosphate, nitrate and sugar availability and optimal pH, the proportion of starch to total dry weight is slightly higher (12.5%). Suppressing the photosynthetic activity of L. minor by growing it in the dark and the addition of glucose further increases starch accumulation up to 36%. [28]

After harvesting, enzymatic hydrolysis releases up to 96.2% of starch bound glucose. [28] The ethanol yield per dry weight in the subsequent fermentation process depends on the glucose content and nutrient availability in the growth medium, but can be compared to ethanol yields from lignocellulose of energy crops like Miscanthus and Giant reed. [28] [29] But in contrast to these energy crops, L. minor biomass does not require any thermal or chemical pretreatments. [28]

Lemna japonica has been genetically engineered to produce up to seven times more oil per acre than soybeans. [30]

Ecotoxicity experiments

Lemna minor is commonly used for the ecotoxicity assessment of organic and inorganic micropollutants [31] as well as for evaluating the toxicity of wastewater and landfill leachates. [32] Information for the applied methodology are provided in the relevant OECD protocol. [33]

Related Research Articles

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in response to excess nutrient availability

Eutrophication is the "explosive growth of microorganisms, to the extent that dissolved oxygen is depleted". Other definitions emphasize the role of excessive nutrient supply: "excessive plant growth resulting from nutrient enrichment". and phosphorus. It has also been defined as "nutrient-induced increase in phytoplankton productivity".

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including hot springs, stagnant water bodies, as well as microbial mats in intertidal zones. Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide, or thiosulfate (as well, some species can use H2, Fe2+, or NO2) as the electron donor in their photosynthetic pathways. The sulfur is oxidized to produce granules of elemental sulfur. This, in turn, may be oxidized to form sulfuric acid.

<i>Lemna</i> Genus of flowering plants in the family Araceae

Lemna is a genus of free-floating aquatic plants referred to by the common name "duckweed". They are morphologically divergent members of the arum family Araceae. These rapidly growing plants have found uses as a model system for studies in community ecology, basic plant biology, ecotoxicology, and production of biopharmaceuticals, and as a source of animal feeds for agriculture and aquaculture. Currently, 14 species of Lemna are recognised.

<span class="mw-page-title-main">Constructed wetland</span> Artificial wetland to treat municipal or industrial wastewater, greywater or stormwater runoff

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter.

An anaerobic lagoon or manure lagoon is a man-made outdoor earthen basin filled with animal waste that undergoes anaerobic respiration as part of a system designed to manage and treat refuse created by concentrated animal feeding operations (CAFOs). Anaerobic lagoons are created from a manure slurry, which is washed out from underneath the animal pens and then piped into the lagoon. Sometimes the slurry is placed in an intermediate holding tank under or next to the barns before it is deposited in a lagoon. Once in the lagoon, the manure settles into two layers: a solid or sludge layer and a liquid layer. The manure then undergoes the process of anaerobic respiration, whereby the volatile organic compounds are converted into carbon dioxide and methane. Anaerobic lagoons are usually used to pretreat high strength industrial wastewaters and municipal wastewaters. This allows for preliminary sedimentation of suspended solids as a pretreatment process.

<span class="mw-page-title-main">Wastewater quality indicators</span> Ways to test the suitability of wastewater

Wastewater quality indicators are laboratory test methodologies to assess suitability of wastewater for disposal, treatment or reuse. The main parameters in sewage that are measured to assess the sewage strength or quality as well as treatment options include: solids, indicators of organic matter, nitrogen, phosphorus, indicators of fecal contamination. Tests selected vary with the intended use or discharge location. Tests can measure physical, chemical, and biological characteristics of the wastewater. Physical characteristics include temperature and solids. Chemical characteristics include pH value, dissolved oxygen concentrations, biochemical oxygen demand (BOD) and chemical oxygen demand (COD), nitrogen, phosphorus, chlorine. Biological characteristics are determined with bioassays and aquatic toxicology tests.

<span class="mw-page-title-main">Aerobic granular reactor</span>

Aerobic granular reactors (AGR) or Aerobic granular sludge (AGS) are a community of microbial organisms, typically around 0.5-3mm in diameter, that remove carbon, nitrogen, phosphorus and other pollutants in a single sludge system. It can also be used for wastewater treatments. Aerobic granular sludge is composed of bacteria, protozoa and fungi,which allows oxygen to follow in and biologically oxidize organic pollutants. AGS is a type of wastewater treatment process for sewages and/or industrial waste treatment. AGR was first discovered by UK engineers, Edward Ardern and W.T. Lockett who were researching better ways for sewage disposal. Another scientist by the name of Dr. Gilbert Fowler, who was at the University of Manchester working on an experiment based on aeration of sewage in a bottle coated with algae. Eventually, all three scientists were able to collaborate with one another to discover AGR/AGS.

<i>Scenedesmus</i> Genus of green algae

Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.

Bittern, or nigari, is the salt solution formed when halite precipitates from seawater or brines. Bitterns contain magnesium, calcium, and potassium ions as well as chloride, sulfate, iodide, and other ions.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

<span class="mw-page-title-main">Trophic state index</span> Measure of the ability of water to sustain biological productivity

The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Organisms involved in water purification</span>

Most organisms involved in water purification originate from the waste, wastewater or water stream itself or arrive as resting spore of some form from the atmosphere. In a very few cases, mostly associated with constructed wetlands, specific organisms are planted to maximise the efficiency of the process.

<span class="mw-page-title-main">Leaching (agriculture)</span> Loss of water-soluble plant nutrients from soil due to rain and irrigation

In agriculture, leaching is the loss of water-soluble plant nutrients from the soil, due to rain and irrigation. Soil structure, crop planting, type and application rates of fertilizers, and other factors are taken into account to avoid excessive nutrient loss. Leaching may also refer to the practice of applying a small amount of excess irrigation where the water has a high salt content to avoid salts from building up in the soil. Where this is practiced, drainage must also usually be employed, to carry away the excess water.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<i>Spirodela polyrhiza</i> Species of flowering plant in the family Araceae

Spirodela polyrhiza is a species of duckweed known by the common names common duckmeat, greater duckweed, great duckmeat, common duckweed, and duckmeat. It can be found nearly worldwide in many types of freshwater habitat.

<i>Wolffia arrhiza</i> Species of flowering plant in the family Araceae

Wolffia arrhiza is a species of flowering plant known by the common names spotless watermeal and rootless duckweed, belonging to the Araceae, a family rich in water-loving species, such as Arum and Pistia. It is the smallest vascular plant on Earth. It is native to Europe, Africa, and parts of Asia, and it is present in other parts of the world as a naturalized species.

<span class="mw-page-title-main">Lemnoideae</span> Subfamily of aquatic plants

Lemnoideae is a subfamily of flowering aquatic plants, known as duckweeds, water lentils, or water lenses. They float on or just beneath the surface of still or slow-moving bodies of fresh water and wetlands. Also known as bayroot, they arose from within the arum or aroid family (Araceae), so often are classified as the subfamily Lemnoideae within the family Araceae. Other classifications, particularly those created prior to the end of the twentieth century, place them as a separate family, Lemnaceae.

References

  1. Lansdown, R.V. (2019). "Lemna minor". IUCN Red List of Threatened Species . 2019: e.T164057A120125670. doi: 10.2305/IUCN.UK.2019-2.RLTS.T164057A120125670.en . Retrieved 19 November 2021.
  2. BSBI List 2007 (xls). Botanical Society of Britain and Ireland. Archived from the original (xls) on 2015-06-26. Retrieved 2014-10-17.
  3. 1 2 USDA, NRCS (n.d.). "Lemna minor". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 24 January 2016.
  4. Klaus J.; Nikolai B.; Eric L. (2013). "Telling duckweed apart: genotyping technologies for the Lemnaceae". 应用与环境生物学报. 19: 1–10. doi:10.3724/sp.j.1145.2013.00001.
  5. 1 2 Leng (1995). "Duckweed: A potential high–protein feed resource for domestic animals and fish". Livestock Research for Rural Development. 7 (1): 1–12.
  6. 1 2 Hasan, M.R. (2009). "Use of algae and aquatic macrophytes as feed in small-scale aquaculture - a review". FAO Fisheries and Aquaculture Technical Paper.
  7. Bergmann, B.A. (2000). "In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation". Bioresource Technology. 73 (1): 13–20. Bibcode:2000BiTec..73...13B. doi:10.1016/s0960-8524(99)00137-6.
  8. 1 2 Cheng, J. (2002b). "Nutrient Removal from Swine Lagoon Liquid by Lemna Minor 8627". Transactions of the ASAE. 45 (4): 1003–1010. doi:10.13031/2013.9953.
  9. 1 2 3 "Lemna System for Wastewater Treatment". National Environmental Technology Applications Corporation. 412: 826–5511.
  10. Sasmaz M, Topal EI, Obek E, Sasmaz A (2015). "The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey". Journal of Environmental Management. 163: 246–253. doi:10.1016/j.jenvman.2015.08.029. hdl: 11508/8876 . PMID   26332457.
  11. Goswami C, Majumder A, Misra AK, Bandyopadhyay K (2014). "Arsenic Uptake by Lemna minor in Hydroponic System, International". Journal of Phytoremediation. 16 (12): 1221–1227. doi:10.1080/15226514.2013.821452. PMID   24933913. S2CID   43134055.
  12. 1 2 Rahmani GN, Sternberg SP (1999). "Bioremoval of lead from water using Lemna minor". Bioresource Technology. 70 (3): 225–230. Bibcode:1999BiTec..70..225R. doi:10.1016/s0960-8524(99)00050-4.
  13. 1 2 3 Skillicorn P, Spira W and Journey W (1993), Duckweed aquaculture a new aquatic farming system for developing countries, The International Bank for Reconstruction and Development/The World Bank
  14. William S. Hillman; Dudley D. Culley Jr. (1978). "The Uses of Duckweed". American Scientist. 66 (4): 442–451. Bibcode:1978AmSci..66..442H.
  15. OECD (2003), Technical Guidance for the Environmentally Sound Management of Specific Waste Streams: Used and Scrap Personal Computers. Organization for Economic Cooperation and Development Working Group on Waste Prevention and Recycling.
  16. Huang JW, Poynton CY, Kochian LV, Elless MP (2004). "Phytofiltration of arsenic from drinking water using arsenic hyperaccumulating ferns". Environ Sci Technol. 38 (12): 3412–3417. Bibcode:2004EnST...38.3412H. doi:10.1021/es0351645. PMID   15260342.
  17. Baby J, Raj J, Biby ET, Sankarganesh P, Jeevitha MV, Ajisha SU, Rajan SS (2010). "Toxic effect of heavy metals on aquatic environment". International Journal of Biological and Chemical Sciences. 4 (4): 939–952. doi: 10.4314/ijbcs.v4i4.62976 .
  18. Iatrou E.I., Gatidou G., Damalas D., Thomaidis N.S., Stasinakis A.S. (2017) Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems. Journal of Hazardous Materials 330, 116-126, https://doi.org/10.1016/j.jhazmat.2017.02.005
  19. Gatidou G., Oursouzidou M., Stefanatou A., Stasinakis A.S. (2017) Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems. Science of the Total Environment 596-597, 12-17, https://doi.org/10.1016/j.scitotenv.2017.04.051
  20. 1 2 Leng (1999). "Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment". Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment. FAO. Retrieved 2016-11-20.
  21. Men, Bui Xuan; Ogle, Brian; Lindberg, Jan Erik (2001). "Use of duckweed as a protein supplement for growing ducks". Asian-Australasian Journal of Animal Sciences. 14 (12): 1741–1746. doi: 10.5713/ajas.2001.1741 .
  22. Ahammad, M. U.; Swapon, M. S. R; Yeasmin, T.; Rahman, M. S.; Ali, M. S. (2003). "Replacement of sesame oil cake by duckweed (Lemna minor) in broiler diet". Biological Sciences. 16: 1450–1453.
  23. Akter, M., Chowdhury, S. D., S. D., Akter Y., Khatun, M. A. (2011). "Effect of Duckweed (Lemna minor) Meal in the Diet of Laying Hen and Their Performance". Bangladesh Research Publications Journal. 5: 252–261.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. El-Shafai (2007). "Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system". Bioresource Technology. 98 (4): 798–807. Bibcode:2007BiTec..98..798E. doi:10.1016/j.biortech.2006.03.011. PMID   16713255.
  25. Bergmann, B.A. (2000). "Nutrient removal from swine lagoon effluent by Duckweed". Transactions of the ASAE. 42 (2): 263–269. doi:10.13031/2013.2701.
  26. Caicedo, J.R. (2002). "Effect of anaerobic pretreatment on environmental and physiochemical characteristics of duckweed based stabilization ponds". Water Science and Technology. 45 (1): 83–89. doi:10.2166/wst.2002.0012. PMID   11833735.
  27. Rodrigo, A. (2012). "High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds". Bioresource Technology. 112: 98–104. Bibcode:2012BiTec.112...98M. doi: 10.1016/j.biortech.2012.02.083 . PMID   22425517.
  28. 1 2 3 4 5 Ge X, Zhang N, Phillips GC, Xu J (2012). "Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol". Bioresource Technology. 124: 485–488. Bibcode:2012BiTec.124..485G. doi:10.1016/j.biortech.2012.08.050. PMID   22985823.
  29. Ge X.; Burner DM; Xu J; Phillips GC; Sivakumar G (2011). "Bioethanol production from dedicated energy crops and residues in Arkansas, USA". Biotechnology Journal. 6 (1): 66–73. doi:10.1002/biot.201000240. PMID   21086455.
  30. Liang, Yuanxue; Yu, Xiao-Hong; Anaokar, Sanket; Shi, Hai; Dahl, William B.; Cai, Yingqi; Luo, Guangbin; Chai, Jin; Cai, Yuanheng; Mollá-Morales, Almudena; Altpeter, Fredy; Ernst, Evan; Schwender, Jorg; Martienssen, Robert A.; Shanklin, John (2023). "Engineering triacylglycerol accumulation in duckweed ( Lemna japonica )". Plant Biotechnology Journal. 21 (2): 317–330. doi: 10.1111/pbi.13943 . PMC   9884027 . PMID   36209479.
  31. Gatidou, Georgia; Stasinakis, Athanasios S.; Iatrou, Evangelia I. (1 January 2015). "Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays". Chemosphere. 119: S69–S74. Bibcode:2015Chmsp.119S..69G. doi:10.1016/j.chemosphere.2014.04.030. PMID   24821233.
  32. Nika, M. C.; Ntaiou, K.; Elytis, K.; Thomaidi, V. S.; Gatidou, G.; Kalantzi, O. I.; Thomaidis, N. S.; Stasinakis, A. S. (15 July 2020). "Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology". Journal of Hazardous Materials. 394: 122493. doi:10.1016/j.jhazmat.2020.122493. PMID   32240898. S2CID   214766390.
  33. "Test No. 221: Lemna sp. Growth Inhibition Test". OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing. 2006. doi:10.1787/9789264016194-en. ISBN   978-92-64-01619-4.