HB4 wheat is a type of wheat that has been genetically modified by introducing sunflower genes, [1] with the objective of improving crop productivity. Wheat, along with corn, rice and soybeans, constitute the basis of world food, [2] and different scientific research was focused on improving its productivity. The improvements in food production achieved in the 90's agricultural production could equal the food demand of the world population, thanks to different technological improvements. [3]
In 2004 a team led by Dr. Raquel Chan, Director of Instituto de Agrobiotecnología del Litoral de la Universidad Nacional del Litoral, and members of CONICET jointly patented with the Bioceres agrotechnological group, a genetic construct that years later would give rise to IND-ØØ412-7 wheat (known as HB4 wheat or as "genetically modified wheat"). This variety of wheat is produced through genetic engineering (also called transgenic) and is characterized by its response to drought conditions. The seed was designed with the intention of withstanding longer periods of stress without stopping the accumulation of biomass, improving crop stability and increasing yield.
The HB4 gene introduced into wheat comes from the sunflower and encodes the protein HAHB4 (Helianthus Annuus Homeobox-4) which, being a transcription factor (TF), binds to specific sequences of wheat DNA and regulates the expression of certain genes. The HAHB4 protein belongs to a family of transcription factors whose levels are naturally increased by various types of environmental stress, particularly drought stress.
In event IND-ØØ412-7, this regulation causes a delay in the entry of the plant to the deterioration process known as senescence, giving it some time to wait for the return of normal water availability. This means that it regulates the sensitivity of the protection mechanisms that are triggered in the absence of this essential resource for the plant.
HB4 wheat was created to tolerate droughts. These characteristics result in increased yield compared to unmodified varieties. This technology has been approved in the following countries:
Wheat is a natural hybrid derived from interspecies breeding. It has been theorized that the ancestors of wheat (Triticum monococcum, Aegilops speltoides and Aegilops tauschii, all diploid grasses) naturally hybridized over millennia somewhere in western Asia, to create natural polyploid hybrids, the best known of which are the common wheat and durum wheat.
Wheat (Triticum spp.) is an important domestic grass used throughout the world for food. Its evolution has been influenced by human intervention since the dawn of agriculture.
Interspecies gene transference continued to occur in farmers' fields during the shift from the Paleolithic diet to the diet adopted by humans after the Neolithic Revolution or the first Green Revolution. During the transition from a hunter-gatherer social structure from foragers to more agrarian societies, humans began to grow wheat and transform it to meet their needs. Thus, the social and cultural roots of humans and the development of wheat have been intertwined since before recorded history.
This process gave rise to several species of wheat that are grown for specific purposes and climates. In 1873, Wilson cultivated cross strains of rye and wheat to create triticale. Additional transformations using cytogenic hybridization techniques allowed Norman Borlaug, father of the second Green Revolution, to develop species of wheat (the semidwarf varieties) that would grow in harsh environments.
Recombinant DNA techniques were developed in the 1980s, work began to create the first transgenic wheat, coinciding with the third green revolution. Of the three most important cereals in the world (corn, rice and wheat), wheat was last transformed by transgenic, biolistic methods in 1992, and by Agrobacterium methods in 1997. Unlike maize and rice, its widespread use in the human diet has faced cultural resistance.
Wheat is a grass widely cultivated for its seed, a cereal grain that is a staple food around the world. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.
Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using various methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.
Dwarfing is a process in which a breed of animals or cultivar of plants is changed to become significantly smaller than standard members of their species. The effect can be induced through human intervention or non-human processes, and can include genetic, nutritional or hormonal means. Used most specifically, dwarfing includes pathogenic changes in the structure of an organism, in contrast to non-pathogenic proportional reduction in stature.
Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.
Aegilops is a genus of Eurasian and North American plants in the grass family, Poaceae. They are known generally as goatgrasses. Some species are known as invasive weeds in parts of North America.
During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This diversity has led to much confusion in the naming of wheats. Genetic and morphological characteristics of wheat influence its classification; many common and botanical names of wheat are in current use.
A transgene is a gene that has been transferred naturally, or by any of a number of genetic engineering techniques, from one organism to another. The introduction of a transgene, in a process known as transgenesis, has the potential to change the phenotype of an organism. Transgene describes a segment of DNA containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may either retain the ability to produce RNA or protein in the transgenic organism or alter the normal function of the transgenic organism's genetic code. In general, the DNA is incorporated into the organism's germ line. For example, in higher vertebrates this can be accomplished by injecting the foreign DNA into the nucleus of a fertilized ovum. This technique is routinely used to introduce human disease genes or other genes of interest into strains of laboratory mice to study the function or pathology involved with that particular gene.
Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.
Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.
Genetically modified plants have been engineered for scientific research, to create new colours in plants, deliver vaccines, and to create enhanced crops. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. Many plant cells are pluripotent, meaning that a single cell from a mature plant can be harvested and then under the right conditions form a new plant. This ability is most often taken advantage by genetic engineers through selecting cells that can successfully be transformed into an adult plant which can then be grown into multiple new plants containing transgene in every cell through a process known as tissue culture.
In botany, drought tolerance is the ability by which a plant maintains its biomass production during arid or drought conditions. Some plants are naturally adapted to dry conditions, surviving with protection mechanisms such as desiccation tolerance, detoxification, or repair of xylem embolism. Other plants, specifically crops like corn, wheat, and rice, have become increasingly tolerant to drought with new varieties created via genetic engineering. From an evolutionary perspective, the type of mycorrhizal associations formed in the roots of plants can determine how fast plants can adapt to drought.
Genetically modified fish are organisms from the taxonomic clade which includes the classes Agnatha, Chondrichthyes and Osteichthyes whose genetic material (DNA) has been altered using genetic engineering techniques. In most cases, the aim is to introduce a new trait to the fish which does not occur naturally in the species, i.e. transgenesis.
Genetically modified wheat is wheat that has been genetically engineered by the direct manipulation of its genome using biotechnology. As of 2020, no genetically-modified wheat is grown commercially, although many field tests have been conducted. One wheat variety, Bioceres HB4 Wheat, is obtaining regulatory approval from the government of Argentina.
Genetically modified rice are rice strains that have been genetically modified. Rice plants have been modified to increase micronutrients such as vitamin A, accelerate photosynthesis, tolerate herbicides, resist pests, increase grain size, generate nutrients, flavors or produce human proteins.
A genetically modified soybean is a soybean that has had DNA introduced into it using genetic engineering techniques. In 1996, the first genetically modified soybean was introduced to the U.S. by Monsanto. In 2014, 90.7 million hectares of GM soybeans were planted worldwide, making up 82% of the total soybeans cultivation area.
A genetically modified tomato, or transgenic tomato, is a tomato that has had its genes modified, using genetic engineering. The first trial genetically modified food was a tomato engineered to have a longer shelf life, which was on the market briefly beginning on May 21, 1994. The first direct consumption tomato was approved in Japan in 2021. Primary work is focused on developing tomatoes with new traits like increased resistance to pests or environmental stresses. Other projects aim to enrich tomatoes with substances that may offer health benefits or be more nutritious. As well as aiming to produce novel crops, scientists produce genetically modified tomatoes to understand the function of genes naturally present in tomatoes.
Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.
Rachel (Raquel) Chan is a pioneering Argentine biochemist from the Santa Fe Province in Argentina. Her work has centered on photosynthesis, and she has invented multiple drought-resistant seeds. She is the Director of the Agrobiotechnology Institute of Santa Fe (IAL). Chan was named one of the ten most outstanding women scientists in Latin America by the BBC.
Paramjit Khurana is an Indian scientist in Plant Biotechnology, Molecular Biology, Genomics who is presently Professor in the Department of Plant Molecular Biology in the University of Delhi, Delhi. She has received many awards and published more than 125 scientific papers.
Barley is known to be more environmentally-tolerant than other cereal crops, in terms of soil pH, mineral nutrient availability, and water availability. Because of this, much research is being done on barley plants in order to determine whether or not there is a genetic basis for this environmental hardiness.