Hessian fly

Last updated

Hessian fly
Hessian Fly.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Cecidomyiidae
Genus: Mayetiola
Species:
M. destructor
Binomial name
Mayetiola destructor
(Say, 1817)
Synonyms

Cecidomyia destructor Say, 1817

The Hessian fly or barley midge, Mayetiola destructor, is a species of fly that is a significant pest of cereal crops including wheat, barley and rye. Though a native of Asia, upon its discovery it was believed to have been transported into North America in the straw bedding of Hessian troops during the American Revolution (1775–1783), thus the origin of its common name. However, the report of an inquiry made in 1788 by Sir Joseph Banks states that "no such insect could be found to exist in Germany or any other part of Europe". Nonetheless, it appears that this species, or one exactly like it in habits, had been known for at least a century prior to the American Revolution from a locality near Geneva, and also for a long time from some regions in France. [1]

There are usually two generations a year but may be up to five. In the spring the dark-coloured female lays about 250 to 300 reddish eggs on plants, usually where the stems are covered by leaves; the larvae feed on the sap and weaken the plants so that they cannot bear grain.

The Hessian fly was described by Thomas Say in 1817. It is a very harmful insect. It mainly attacks the stem, although if it is especially hungry it will eat any part of the plant it can find.[ citation needed ]

In 1836, a severe infestation of Hessian flies resulted in a crop shortage aggravating the financial problems of farmers prior to the Panic of 1837. [2]

Host defense

M. destructor is one of the most destructive wheat pests worldwide, hence its name. [3] This has brought it much attention from wheat breeder and genetics researchers. [3] As a result the highest number of mapped R genes for resistance to insects in wheat are R genes for this pest specifically, with the unrelated Russian wheat aphid (Diuraphis noxia) also being of serious interest. [3]

Related Research Articles

<span class="mw-page-title-main">Wheat</span> Genus of grass cultivated for the grain

Wheat is a grass widely cultivated for its seed, a cereal grain that is a worldwide staple food. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.

<span class="mw-page-title-main">Rice</span> Cereal (Oryza sativa)

Rice is a cereal grain, and in its domesticated form is the staple food for over half of the world's human population, particularly in Asia and Africa, due to the vast amount of soil that is able to grow rice. Rice is the seed of the grass species Oryza sativa or, much less commonly, O. glaberrima. Asian rice was domesticated in China some 13,500 to 8,200 years ago, while African rice was domesticated in Africa some 3,000 years ago. Rice has become commonplace in many cultures worldwide; in 2021, 787 million tons were produced, placing it fourth after sugarcane, maize, and wheat. Only some 8% of rice is traded internationally. China, India, and Indonesia are the largest consumers of rice. A substantial amount of the rice produced in developing nations is lost after harvest through factors such as poor transport and storage. Rice yields can be reduced by pests including insects, rodents, and birds, as well as by weeds, and by diseases such as rice blast. Traditional polycultures such as rice-duck farming, and modern integrated pest management seek to control damage from pests in a sustainable way.

<span class="mw-page-title-main">Rye</span> Species of grain

Rye is a grass grown extensively as a grain, a cover crop and a forage crop. It is a member of the wheat tribe (Triticeae) and is closely related to both wheat and barley. Rye grain is used for flour, bread, beer, crispbread, some whiskeys, some vodkas, and animal fodder. It can also be eaten whole, either as boiled rye berries or by being rolled, similar to rolled oats.

<span class="mw-page-title-main">Monoculture</span> Farms producing only one crop at a time

In agriculture, monoculture is the practice of growing one crop species in a field at a time. Monoculture is widely used in intensive farming and in organic farming: both a 1,000-hectare cornfield and a 10-ha field of organic kale are monocultures. Monoculture of crops has allowed farmers to increase efficiency in planting, managing, and harvesting, mainly by facilitating the use of machinery in these operations, but monocultures can also increase the risk of diseases or pest outbreaks. This practice is particularly common in industrialized nations worldwide. Diversity can be added both in time, as with a crop rotation or sequence, or in space, with a polyculture or intercropping.

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Pest control</span> Control of harmful species

Pest control is the regulation or management of a species defined as a pest; such as any animal, plant or fungus that impacts adversely on human activities or environment. The human response depends on the importance of the damage done and will range from tolerance, through deterrence and management, to attempts to completely eradicate the pest. Pest control measures may be performed as part of an integrated pest management strategy.

<span class="mw-page-title-main">Pearl millet</span> Species of cultivated grass

Pearl millet is the most widely grown type of millet. It has been grown in Africa and the Indian subcontinent since prehistoric times. The center of diversity, and suggested area of domestication, for the crop is in the Sahel zone of West Africa. Recent archaeobotanical research has confirmed the presence of domesticated pearl millet on the Sahel zone of northern Mali between 2500 and 2000 BC. 2023 was the International Year of Millets, declared by the United Nations General Assembly in 2021.

<span class="mw-page-title-main">Cecidomyiidae</span> Family of flies

Cecidomyiidae is a family of flies known as gall midges or gall gnats. As the name implies, the larvae of most gall midges feed within plant tissue, creating abnormal plant growths called galls. Cecidomyiidae are very fragile small insects usually only 2–3 mm (0.079–0.118 in) in length; many are less than 1 mm (0.039 in) long. They are characterised by hairy wings, unusual in the order Diptera, and have long antennae. Some Cecidomyiids are also known for the strange phenomenon of paedogenesis in which the larval stage reproduces without maturing first. In some species, the daughter larvae consume the mother, while in others, reproduction occurs later on in the egg or pupa.

<i>Blissus leucopterus</i> Species of insect

Blissus leucopterus, also known as the true chinch bug, is a small North American insect in the order Hemiptera and family Blissidae. It is the most commonly encountered species of the genus Blissus, which are all known as chinch bugs. A closely related species is B. insularis, the southern chinch bug.

<span class="mw-page-title-main">Sunn pest</span> Common name for certain true bugs

Sunn pests are grain insect pests belonging to several genera of the 'shield bug' family Scutelleridae, with the species Eurygaster integriceps being the most economically important. Sunn pests are found in parts of North Africa, throughout West Asia and many of the new independent states of Central Asia.

<span class="mw-page-title-main">Stem rust</span> Fungus disease of cereal crops

Stem rust, also known as cereal rust, black rust, red rust or red dust, is caused by the fungus Puccinia graminis, which causes significant disease in cereal crops. Crop species that are affected by the disease include bread wheat, durum wheat, barley and triticale. These diseases have affected cereal farming throughout history. The annual recurrence of stem rust of wheat in North Indian plains was discovered by K.C. Mehta. Since the 1950s, wheat strains bred to be resistant to stem rust have become available. Fungicides effective against stem rust are available as well.

<span class="mw-page-title-main">Russian wheat aphid</span> Species of true bug

The Russian wheat aphid is an aphid that can cause significant losses in cereal crops. The species was introduced to the United States in 1986 and is considered an invasive species there. This aphid is pale green and up to 2 mm long. Cornicles are very short, rounded, and appear to be lacking. There is an appendage above the cauda giving the aphid the appearance of having two tails. The saliva of this aphid is toxic to the plant and causes whitish striping on cereal leaves. Feeding by this aphid will also cause the flag leaf to turn white and curl around the head causing incomplete head emergence. Its host plants are cereal grain crops including wheat and barley and to a lesser extent, wild grasses such as wheatgrasses, brome-grasses, ryegrasses and anything in the grass family.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

<span class="mw-page-title-main">Intensive crop farming</span> Modern form of farming

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

<i>Eurygaster integriceps</i> Species of true bug

Eurygaster integriceps is a species of shield bug in the family Scutelleridae, commonly known as the sunn pest or corn bug. It is native to much of northern Africa, the Balkans and western and central Asia. It is a major pest of cereal crops especially wheat, barley and oats.

<i>Contarinia tritici</i> Species of fly

Contariniatritici is a small dipterous insect of the family of gall gnats. It depredates wheat, to which it is nearly as destructive as the famous and closely allied species, the Hessian fly. As is typical for agricultural pests, the species is known by a number of common names, including wheat fly, lemon wheat blossom midge, wheat blossom midge, wheat yellow blossom midge, yellow wheat blossom midge, and yellow wheat gall midge.

<i>Rhopalosiphum rufiabdominale</i> Species of aphid

Rhopalosiphum rufiabdominale, the rice root aphid or red rice root aphid, is a sap-sucking insect pest with a wide host range and a global distribution. As a member of the superfamily Aphidoidea, it is one of 16 species of the genus Rhopalosiphum. Adults and nymphs are soft-bodied and usually dark green with brown, red, or yellow tones. Like all aphids, reproduction is sexual and asexual, depending on the environmental conditions and host plant. Rice root aphids cause injury to external plant parts, namely the roots or stem, by feeding on plant sap and vector several important plant viruses. The hosts of this pest extend across multiple plant families with most belonging to Rosaceae, Poaceae, and Solanaceae. R. rufiabdominale is universally associated with Prunus species but also infests various field crops, greenhouse vegetables, cannabis, and other ornamental plants. While this aphid originates from east Asia, it spans nearly every continent. Dispersal is particularly widespread across the United States, India, and Australia, with crop damage documented in multiple instances, although economic losses are primarily associated with Japanese rice crops. Nonetheless, it remains a pest of serious concern due to its high mobility, discrete habitat, and adaptive plasticity, giving it the rightful reputation as a successful invader.

Reginald Henry Painter was an American entomologist and agronomist who was a specialist on plant adaptations against insects and their use for agriculture. He outlined these ideas in the landmark textbook Insect Resistance in Crop Plants (1951), in which he identified three distinct mechanisms and popularized the idea of host-plant resistance in integrated pest management.

References

  1. Harris, Thaddeus W. (1862). Flint, Charles L. (ed.). A treatise on some of the insects injurious to vegetation. New York: Orange Judd and Company. p. 568. doi:10.5962/bhl.title.34053.
  2. McGrane, Reginald Charles. (1924, 1965) The Panic of 1837: Some Financial Problems of the Jackson Era. New York: Russell & Russell Inc.
  3. 1 2 3 Kaloushian, Isgouhi (2004). "Gene-for-gene disease resistance: Bridging insect pest and pathogen defense". Review Article. Journal of Chemical Ecology . 30 (12). Berlin/Heidelberg, Germany: Springer Science+Business Media, Inc: 2419–2438. doi:10.1007/s10886-004-7943-1. eISSN   1573-1561. ISSN   0098-0331. LCCN   75644091. OCLC   299333697. PMID   15724964. S2CID   6156480.