Non-celiac gluten sensitivity

Last updated
Non-celiac gluten sensitivity
Other namesGluten sensitivity
Specialty Gastroenterology, internal medicine, neurology [1]
Symptoms Irritable bowel syndrome-like symptoms, fatigue, headache, fibromyalgia, atopic disorders, neurological diseases, psychiatric problems [2] [3] [4] [5] [6] [7]
Usual onsetAny age [8]
Durationlifelong [9]
CausesReaction to gluten, other proteins and FODMAPS from gluten-containing cereals [3] [10]
Diagnostic method Exclusion of celiac disease and wheat allergy, improvement with gluten withdrawal and worsening after gluten consumption [6] [11] [12]
Treatment Gluten-free diet
Frequency0.5–13% [13]

Non-celiac gluten sensitivity (NCGS) or gluten sensitivity [14] is a controversial disorder which can cause both gastrointestinal and other problems.

Contents

NCGS is included in the spectrum of gluten-related disorders. [3] [4] The definition and diagnostic criteria of non-celiac gluten sensitivity were debated and established by three consensus conferences. [4] [14] [15] [16] [17] However, as of 2019, there remained much debate in the scientific community as to whether NCGS was a distinct clinical disorder. [18]

The pathogenesis of NCGS is not well understood, but the activation of the innate immune system, the direct cytotoxic effects of gluten and probably other wheat components, are implicated. [3] [19] [20] There is evidence that not only gliadin (the main cytotoxic antigen of gluten), but also other proteins named ATIs which are present in gluten-containing cereals (wheat, rye, barley, and their derivatives) may have a role in the development of symptoms. ATIs are potent activators of the innate immune system. [3] [21] FODMAPs, especially fructans, are present in small amounts in gluten-containing grains and have been identified as a possible cause of some gastrointestinal symptoms in NCGS patients. [3] [10] [22] [21] As of 2019, reviews have concluded that although FODMAPs may play a role in NCGS, they explain only certain gastrointestinal symptoms, such as bloating, but not the extra-digestive symptoms that people with NCGS may develop, such as neurological disorders, fibromyalgia, psychological disturbances, and dermatitis. [21] [9] [3]

For these reasons, NCGS is a controversial clinical condition [23] and some authors still question it. [24] [25] It has been suggested that "non-celiac wheat sensitivity" is a more appropriate term, without forgetting that other gluten-containing cereals are implicated in the development of symptoms. [11] [24]

NCGS is the most common syndrome of gluten-related disorders [4] [26] with prevalence rates between 0.5–13% in the general population. [13] As no biomarker for diagnosing this condition is available, its diagnosis is made by exclusion of other gluten-related disorders such as celiac disease and wheat allergy. [23] [27] Many people have not been diagnosed following strict criteria, and there is a "fad component" to the recent rise in popularity of the gluten-free diet, leading to debate surrounding the evidence for this condition and its relationship to celiac disease and irritable bowel syndrome. [3] [5] People with NCGS are often unrecognized by specialists and lack adequate medical care and treatment. [28] They often have a long history of health complaints and unsuccessful consultations with physicians, and thus many resort to a gluten-free diet and a self-diagnosis of gluten sensitivity. [29]

Signs and symptoms

Reported symptoms of NCGS are similar to those of celiac disease, [30] [31] with most patients reporting both gastrointestinal and non-gastrointestinal symptoms. [29] [32] In the "classical" presentation of NCGS, gastrointestinal symptoms are similar to those of irritable bowel syndrome, and are also not distinguishable from those of wheat allergy, but there is a different interval between exposure to wheat and onset of symptoms. Wheat allergy has a fast onset (from minutes to hours) after the consumption of food containing wheat and can be anaphylaxic. [32]

Gastrointestinal

Gastrointestinal symptoms may include any of the following: abdominal pain, bloating, bowel habit abnormalities (either diarrhea or constipation), [4] [6] nausea, aerophagia, and flatulence. [3] [4] [20]

Extraintestinal

NCGS can cause a wide range of extraintestinal symptoms, which can be the only manifestation of NCGS in absence of gastrointestinal symptoms. [3] [4] [6] [5] [7] These include any of the following: headache, migraine, "foggy mind", fatigue, fibromyalgia, [7] [33] joint and muscle pain, leg or arm numbness, tingling of the extremities, dermatitis (eczema or skin rash), atopic disorders such as asthma, rhinitis, other allergies, depression, anxiety, iron-deficiency anemia, folate deficiency, or autoimmune diseases. [3] [4] [6] [7]

A man with gluten ataxia: previous situation and evolution after three months of gluten-free diet

NCGS is also linked to a wide spectrum of neurological and psychiatric disorders, including ataxia, schizophrenia, epilepsy, peripheral neuropathy, encephalopathy, vascular dementia, eating disorders, autism, attention deficit hyperactivity disorder (ADHD), hallucinations (so-called "gluten psychosis"), and various movement disorders (restless legs syndrome, chorea, parkinsonism, Tourette syndrome, palatal tremor, myoclonus, dystonia, opsoclonus myoclonus syndrome, paroxysms, dyskinesia, myorhythmia, myokymia). [1] [34] [2] [3] [4] [5] [6] [7] [35] [36] [37]

Above 20% of people with NCGS have IgE-mediated allergy to one or more inhalants, foods, or metals, among which most common are mites, graminaceae, parietaria, cat or dog hair, shellfish, and nickel. [6] Approximately 35% of patients suffer other food intolerances, mainly lactose intolerance. [7]

Causes

The pathogenesis of NCGS is not yet well understood, but the activation of the innate immune system, the direct cytotoxic effects of gluten, and probably the cytotoxicity of other wheat molecules are implicated. [3] [19] [20] Besides gluten, other components in wheat, rye, barley, and their derivatives, including amylasetrypsin inhibitors (ATIs) and FODMAPs, may cause symptoms. [3]

Gluten

It was hypothesized that gluten, as occurs in celiac disease, is the cause of NCGS. In addition to its ability to elicit abnormal responses of the immune system, in vitro studies on cell cultures showed that gluten is cytotoxic and causes direct intestinal damage. Gluten and gliadin promote cell apoptosis (a form of programmed cell death) and reduce the synthesis of nucleic acids (DNA and RNA) and proteins, leading to a reduction in the viability of cells. Gluten alters cellular morphology and motility, cytoskeleton organization, oxidative balance and intercellular contact (tight junction proteins). [19] [38]

Other proteins

Some people may have a reaction to other proteins (α-amylase/trypsin inhibitors [ATIs]) present in gluten-containing cereals that are able to inhibit amylase and trypsin. [3] [39] [21] They have been identified as the possible activator of the innate immune system in celiac disease and NCGS. [3] [21]

ATIs are part of the plant's natural defence against insects and may cause toll-like receptor 4 (TLR4)-mediated intestinal inflammation in humans. [21] [40] These TLR4-stimulating activities of ATIs are limited to gluten-containing cereals (wheat, rye, barley, and derivatives) and may induce innate immunity in people with celiac disease or NCGS. ATIs resist proteolytic digestion. [3] ATIs are about 2%–4% of the total protein in modern wheat and are present in commercial gluten. [3] A 2017 study in mice demonstrated that ATIs exacerbate preexisting inflammation and may also worsen it at extraintestinal sites. This may explain why there is an increase of inflammation in people with preexisting diseases upon ingestion of ATI-containing grains. [21]

Modern wheat cultivation, by breeding for high ATI content, may play a role in the onset and course of disorders such as celiac disease and gluten sensitivity. [40] However, it has been questioned whether there is sufficient empirical evidence to support this claim, because as of 2018 we lack studies that directly compare modern wheat versus ancient cultivars with low ATI content (such as einkorn wheat) in people with NCGS. [21] [41]

Wheat germ agglutinin is also considered to be a possible trigger of NCGS-like symptoms. [7]

FODMAPs

FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) that are present in gluten-containing grains (mainly fructans) have been identified as a possible cause of gastrointestinal symptoms in people with NCGS, in place of, [42] or in addition to, gluten. [10]

The amount of fructans in gluten-containing cereals is relatively small and their role has been controversial. In rye they account for 3.6%–6.6% of dry matter, 0.7%–2.9% in wheat, and barley contains only trace amounts. [21] They are only minor sources of FODMAPs when eaten in the usual standard amounts in the daily diet. [3] Wheat and rye may comprise a major source of fructans when consumed in large amounts. [43] They may cause mild wheat intolerance at most, limited to certain gastrointestinal symptoms, such as bloating, but do not justify the NCGS extradigestive symptoms. [3] A 2018 review concluded that although fructan intolerance may play a role in NCGS, it only explains some gastrointestinal symptoms, but not the extradigestive symptoms that people with NCGS may develop, such as neurological disorders, fibromyalgia, psychological disturbances, and dermatitis. FODMAPs cause digestive symptoms when the person is hypersensitive to luminal distension. [21] A 2019 review concluded that wheat fructans can cause certain IBS-like symptoms, such as bloating, but are unlikely to cause immune activation or extra-digestive symptoms. Many people with NCGS report resolution of their symptoms after removing gluten-containing cereals while continuing to eat fruits and vegetables with high FODMAPs content. [9]

Diagnosis

Absence of reliable biomarkers and the fact that some people do not have digestive symptoms make the recognition and diagnosis of non-celiac gluten sensitivity (NCGS) difficult. [39] [1]

Diagnosis is generally performed only by exclusion criteria. [13] [23] NCGS diagnostic recommendations have been established by several consensus conferences. Exclusion of celiac disease and wheat allergy [6] is important because these two conditions also appear in people who experience symptoms similar to those of NCGS, which improve with a gluten withdrawal and worsen after gluten consumption. [6] [11] [12] [35]

The onset of NCGS symptoms may be delayed hours to a few days after gluten ingestion, whereas in celiac disease it can take days to weeks. [11] Wheat allergy has a fast onset (from minutes to hours) after the consumption of food containing wheat and can lead to anaphylaxis. [32]

The presence of related extraintestinal manifestations has been suggested to be a feature of NCGS. [11] When symptoms are limited to gastrointestinal effects, there may be an overlap with wheat allergy, irritable bowel syndrome (IBS), and (less likely) intolerance to FODMAPs. [11]

Proposed criteria for a diagnosis of NCGS suggest an improvement of gastrointestinal symptoms and extra-intestinal manifestations higher than 30% with a gluten-free diet (GFD), assessed through a rating scale, is needed to make a clinical diagnosis of NCGS. [35] To exclude a placebo effect, a double-blind placebo-controlled gluten challenge is a useful tool, although it is expensive and complicated for routine clinical use, and so is usually performed in research studies. [6] [23]

These suggestions were incorporated in the Salerno expert consensus on diagnostic criteria for NCGS. These recommend assessment of the response to a 6-week trial of a gluten-free diet using a defined rating scale (Step 1), followed by a double-blind, placebo-controlled challenge of gluten (or placebo) for a week of each (Step 2). [35] A variation of greater than 30% in the main symptoms when challenged by gluten or placebo is needed for a positive result. Further research on possible biomarkers was also identified. [35]

Differential diagnosis

Examinations evaluating celiac disease and wheat allergy should be performed before patients remove gluten from their diet. [6] It is critical to make a clear distinction between celiac disease and NCGS. [13]

Celiac disease

The main goal in diagnosing NCGS is to exclude celiac disease. [7] [22] NCGS and celiac disease cannot be separated in diagnosis because many gastrointestinal and non-gastrointestinal symptoms are similar in both diseases, [22] [29] [30] and there are people with celiac disease having negative serology (absence of specific celiac disease antibodies in serum) or without villus atrophy. [13] [44] There is no test capable of eliminating a diagnosis of a celiac disease, [45] but such a diagnosis is unlikely without confirming HLA-DQ2 and/or HLA-DQ8 haplotypes. [32]

The prevalence of undiagnosed celiac disease has increased fourfold during the past half-century, [3] with most cases remaining unrecognized, undiagnosed and untreated, leaving celiac patients with the risk of long-term complications. [39] [46] Some people with NCGS may indeed have celiac disease. [13] A 2015 systematic review found that 20% of people with NCGS presenting with HLA-DQ2 and/or HLA-DQ8 haplotypes, negative serology, and normal histology or duodenal lymphocytosis had celiac disease. [13]

The presence of autoimmune symptoms in people with NCGS suggests the possibility of undiagnosed celiac disease. [13] Autoimmune diseases typically associated with celiac disease are diabetes mellitus type 1, thyroiditis, [47] gluten ataxia, psoriasis, vitiligo, autoimmune hepatitis, dermatitis herpetiformis, primary sclerosing cholangitis, and others. [47]

To evaluate the possible presence of celiac disease, specific serology and duodenal biopsies are required while the person is still on a diet that includes gluten. [3] [39]

Serological markers

Serological CD markers (IgA tissue transglutaminase [tTGA], IgA endomysial [EmA] [6] [39] and IgG deamidated gliadin peptide [DGP] [6] [13] antibodies) are always negative in those with NCGS; [6] [12] [22] [39] in addition to specific IgA autoantibody levels, it is necessary to determine total IgA levels. [12] [30] IgG tTGA antibodies should be checked in selective IgA deficiency, which can be associated with celiac disease and occurs in as many as one in 40 celiac patients. [12]

Nevertheless, the absence of serological markers does not certainly exclude celiac disease. In those with celiac disease before diagnosis (on a gluten-containing diet), celiac disease serological markers are not always present. [32] As the age of diagnosis increases, these antibody titers decrease, and may be low or even negative in older children and adults. The absence of celiac disease-specific antibodies is more common in patients without villous atrophy who only have duodenal lymphocytosis (Marsh 1 lesions) and who respond to a gluten-free diet with histological and symptomatic improvement. [13]

Duodenal biopsies

According to the diagnostic criteria established by the consensus conferences (2011 and 2013), it is necessary to perform duodenal biopsies to exclude celiac disease in symptomatic people with negative specific celiac disease antibodies. [6] Because of the patchiness of the celiac disease lesions, four or more biopsies are taken from the second and third parts of the duodenum, and at least one from the duodenal bulb. [22] [30] Even in the same biopsy fragments, different degrees of pathology may exist. [30]

Duodenal biopsies in people with NCGS are always almost normal [7] [12] [22] [30] an essential parameter for diagnosis of NCGS, [30] although it is generally accepted that a subgroup of people with NGCS may have an increased number of duodenal intraepithelial lymphocytes (IELs) [7] [13] [39] (≥25/100 enterocytes), which represent Marsh I lesions. [13] Nevertheless, Marsh I is considered compatible with celiac disease [22] and the most frequent cause of these findings, especially in people positive for HLA DQ2 and/or DQ8 haplotypes, is celiac disease, [7] [13] with a prevalence of 16-43%. [13]

In people with duodenal lymphocytosis following guidelines from the European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) a high count of celiac disease cells (or CD/CD3 ratio) in immunohistochemical assessment of biopsies, or the presence of IgA anti-TG2 [13] [7] and/or anti-endomysial [7] intestinal deposits, might be specific markers for celiac disease. [7] [13] Catassi and Fasano proposed in 2010 that in patients without celiac disease antibodies, either lymphocytic infiltration associated with IgA subepithelial deposits or a histological response to a gluten-free diet, could support a diagnosis of celiac disease. [13]

Wheat allergy

The clinical presentation may be sufficient in most cases to distinguish a wheat allergy from other entities. [30] It is excluded when there are normal levels of serum IgE antibodies to gluten proteins and wheat fractions, and no skin reaction to prick tests for wheat allergy. [6] Nevertheless, these tests are not always completely reliable. [11]

If an allergic reaction can not be clearly identified, the diagnosis should be confirmed by food provocation tests, ideally performed in a double-blinded and placebo-controlled manner. Delayed allergic reactions may occur with these type of tests, which have to be negative over time, but there are no international consensus statements on diagnosing delayed wheat/food-related symptoms. Usually, reactions that appear between two hours and five days after the oral challenge are considered delayed. [22] Mucosal challenge followed by confocal endomicroscopy is a complementary diagnostic technique, but this technology is not yet generally available and remains experimental. [11]

Other tests

Evaluating the presence of antigliadin antibodies (AGA) can be a useful complementary diagnostic test. Up to 50% NCGS patients may have elevated AGA IgG antibodies, but rarely AGA IgA antibodies (only 7% of the cases). [6] [7] [39] In these patients, unlike in those with celiac disease, the IgG AGA became undetectable within six months of following a gluten-free diet. [6]

People already on a gluten-free diet

Many people remove gluten from their diet after a long history of health complaints and unsuccessful consultations with numerous physicians, who simply consider them to be suffering from irritable bowel syndrome, and some may eliminate gluten before seeking medical attention. [6] [7] [29] [39] This fact can diminish the CD serological markers titers and may attenuate the inflammatory changes found in the duodenal biopsies. [7] [39] In these cases, patients should be tested for the presence of HLA-DQ2/DQ8 genetic markers because a negative HLA-DQ2 and HLA-DQ8 result has a high negative predictive value for celiac disease. [6] [7] [39] If these markers are positive, it is advisable to undertake a gluten challenge under medical supervision, followed by serology and duodenal biopsies. [6] [7] [39] However, gluten challenge protocols have significant limitations, because a symptomatic relapse generally precedes the onset of a serological and histological relapse, and therefore becomes unacceptable for many patients. [6] [7] [22] [39] Gluten challenge is also discouraged before the age of five and during pubertal growth. [22]

It remains unclear what daily intake of gluten is adequate and how long the gluten challenge should last. [39] Some protocols recommend eating a maximum of 10 g of gluten per day for six weeks. Nevertheless, recent studies have shown that a two-week challenge of 3 g of gluten per day may induce histological and serological abnormalities in most adults with proven celiac disease. [7] [39] This new proposed protocol has shown higher tolerability and compliance. It has been calculated that its application in secondary-care gastrointestinal practice would identify celiac disease in 7% of patients referred for suspected NCGS, while the remaining 93% would be confirmed as NCGS; [39] this is not yet universally adopted. [7]

For people on a gluten-free diet who are unable to perform an oral gluten challenge, an alternative to identify possible celiac disease is an in vitro gliadin challenge of small bowel biopsies, but this test is only available at selected specialized tertiary-care centers. [7]

Treatment

After exclusion of celiac disease and wheat allergy, [29] the subsequent step for diagnosis and treatment of NCGS is to start a strict gluten-free diet (GFD) to assess if symptoms improve or resolve completely. This may occur within days to weeks of starting a GFD, but improvement may also be due to a non-specific, placebo response. [48] The recovery of the nervous system is slow and sometimes incomplete. [37] [49]

Recommendations may resemble those for celiac disease, for the diet to be strict and maintained, with no transgression. [6] The degree of gluten cross contamination tolerated by people with NCGS is not clear but there is some evidence that they can present with symptoms even after consumption of small amounts. [6] Sporadic accidental contaminations with gluten can reactivate movement disorders. [37] A part of people with gluten-related neuropathy or ataxia appears not to be able to tolerate even the traces of gluten allowed in most foods labeled as "gluten-free". [49]

Whereas celiac disease requires adherence to a strict lifelong gluten-free diet, it is not yet known whether NCGS is a permanent or a transient condition. [6] [23] The results of a 2017 study suggest that NCGS may be a chronic disorder, as is the case with celiac disease. [9] A trial of gluten reintroduction to observe any reaction after one to two years of strict gluten-free diet might be performed. [6]

A strict gluten-free diet is effective in most of the neurological disorders associated with NCGS, ameliorating or even resolving the symptoms. It should be started as soon as possible to improve the prognosis. [1] The death of neurons in the cerebellum in ataxia is the result of gluten exposure and is irreversible. Early treatment with a strict gluten-free diet can improve ataxia symptoms and prevent its progression. [34] [50] When dementia has progressed to an advanced degree, the diet has no beneficial effect. Cortical myoclonus appears to be treatment-resistant on both gluten-free diet and immunosuppression. [1]

Persistent symptoms

Approximately one third of presumed NCGS patients continue to have symptoms, despite gluten withdrawal. Apart from a possible diagnostic error, there are multiple possible explanations. [6]

One reason is poor compliance with gluten withdrawal, whether voluntary and/or involuntary. [6] There may be ingestion of gluten, in the form of cross contamination or food containing hidden sources. [10] In some cases, the amelioration of gastrointestinal symptoms with a gluten-free diet is only partial, and these patients could significantly improve with the addition of a low-FODMAP diet. [10]

A subgroup may not improve when eating commercially available gluten-free products, as these can be rich in preservatives and additives such as sulfites, glutamates, nitrates and benzoates, which can also have a role in triggering functional gastrointestinal symptoms. [10] Furthermore, people with NCGS may often present with IgE-mediated allergies to one or more foods. [6] It has been estimated that around 35% suffer other food intolerances, mainly lactose intolerance. [7]

History

The subject of "food intolerance", including gluten sensitivity and elimination diets, was discussed in 1976. [51]

Patients with symptoms including abdominal pain and diarrhea, which improved on gluten withdrawal, and who did not have celiac disease were initially described in 1976 and 1978 with the first series in 1980. [52] [53] [54] Debate regarding the existence of a specific condition has continued since then, but the three consensus conferences held since 2010 produced consistent definitions of NCGS and its diagnostic criteria. [4] [14] [16]

Society and culture

NCGS has been a topic of popular interest. [55] Gluten has been named "the new diet villain". [56] The gluten-free diet has become popular in the United States and other countries. [3] Clinicians worldwide have been challenged by an increasing number of people who do not have celiac disease nor wheat allergy, with digestive or extra-digestive symptoms which improved after removing wheat / gluten from the diet. Many of these persons began a gluten-free diet on their own, without having been previously evaluated. [57] [58] Another reason that contributed to this trend was the publication of several books that demonize gluten and point to it as a cause of type 2 diabetes, weight gain and obesity, and a broad list of conditions ranging from depression and anxiety to arthritis and autism. [59] [60] The book that has had the most impact is Grain Brain: The Surprising Truth about Wheat, Carbs, and Sugar – Your Brain's Silent Killers, by the American celebrity doctor David Perlmutter, published in September 2013. [59] Another book that has had great impact is Wheat Belly: Lose the Wheat, Lose the Weight, and Find Your Path Back to Health, by cardiologist William Davis. [60] The gluten-free diet has been advocated and followed by many celebrities to lose weight, such as Miley Cyrus and Gwyneth Paltrow, and some elite athletes to improve performance. [61] [62]

Estimates suggest that in 2014, 30% of people in the US and Australia were consuming gluten-free foods, with estimates that by 2016 approximately 100 million Americans would consume gluten-free products. [3] [59] [63] Data from a 2015 Nielsen survey of 30,000 adults in 60 countries around the world showed that 21% of people prefer to buy gluten-free foods, with interest highest among younger generations. [64] Many people may be avoiding gluten unnecessarily. [25] [65] [66]

Debate around NCGS as a genuine clinical condition can be heightened because often patients are self diagnosed, or a diagnosis is made by alternative health practitioners. [5] Many people who are making a gluten-free diet did not previously exclude celiac disease or, when they are fully evaluated, other alternative diagnoses can be found such as fructose intolerance or small intestinal bacterial overgrowth, or a better response to a low-FODMAP diet obtained. [7] [6] [58]

Research

There are many open questions on gluten sensitivity, [10] emphasized in one review that "it is still to be clarified whether this disorder is permanent or transient and whether it is linked to autoimmunity". [67] It has not yet been established whether innate or adaptive immune responses are involved in NCGS, nor whether the condition relates specifically to gluten or rather relates to other components of grains. [31] [68]

Studies indicate that AGA IgG is high in slightly more than half of NCGS patients [4] and that, unlike for celiac disease patients, the IgG AGA decreases strongly over 6 months of gluten-free diet; AGA IgA is usually low or absent in NCGS patients. [4] [69]

The need for developing biomarkers for NCGS is frequently emphasized; [4] [29] [70] for example, one review indicated: "There is a desperate need for reliable biomarkers ... that include clinical, biochemical and histopathological findings which support the diagnosis of NCGS." [31]

Research has also attempted to discern, by double-blind placebo-controlled trials, between a "fad component" to the recent popularity of the gluten-free diet and an actual sensitivity to gluten or other components of wheat. [3] [4] [71] In a 2013 double-blind, placebo-controlled challenge (DBPC) by Biesiekierski et al. in 37 people with NCGS and IBS, the authors found no difference between gluten or placebo groups, and the concept of NCGS as a syndrome was questioned. However, it is possible the reintroduction of both gluten and whey protein had a nocebo effect similar in all people, and this could have masked the true effect of gluten/wheat reintroduction. [39] In a 2015 double-blind placebo cross-over trial, small amounts of purified wheat gluten triggered gastrointestinal symptoms (such as abdominal bloating and pain) and extra-intestinal manifestations (such as foggy mind, depression and aphthous stomatitis) in self-reported NCGS. Nevertheless, it remains elusive whether these findings specifically implicate gluten or proteins present in gluten-containing cereals. [7] In a 2018 double-blind, crossover research study on 59 persons on a gluten-free diet with challenges of gluten, fructans or placebo, intestinal symptoms (specifically bloating) were borderline significantly higher after challenge with fructans, in comparison with gluten proteins (P=0.049). [21] [9] Although the differences between the three interventions was very small, the authors concluded that fructans (the specific type of FODMAP found in wheat) are more likely to be the cause of NCGS gastrointestinal symptoms, rather than gluten. [21] In addition, fructans used in the study were extracted from chicory root, so it remains to be seen whether the wheat fructans produce the same effect. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Gluten</span> Group of cereal grain proteins

Gluten is a structural protein naturally found in certain cereal grains. The term gluten usually refers to the elastic network of a wheat grain's proteins, gliadin and glutenin primarily, that forms readily with the addition of water and often kneading in the case of bread dough. The types of grains that contain gluten include all species of wheat, and barley, rye, and some cultivars of oat; moreover, cross hybrids of any of these cereal grains also contain gluten, e.g. triticale. Gluten makes up 75–85% of the total protein in bread wheat.

<span class="mw-page-title-main">Coeliac disease</span> Autoimmune disorder that results in a reaction to gluten

Coeliac disease or celiac disease is a long-term autoimmune disorder, primarily affecting the small intestine, where individuals develop intolerance to gluten, present in foods such as wheat, rye and barley. Classic symptoms include gastrointestinal problems such as chronic diarrhoea, abdominal distention, malabsorption, loss of appetite, and among children failure to grow normally. Non-classic symptoms are more common, especially in people older than two years. There may be mild or absent gastrointestinal symptoms, a wide number of symptoms involving any part of the body, or no obvious symptoms. Coeliac disease was first described in childhood; however, it may develop at any age. It is associated with other autoimmune diseases, such as Type 1 diabetes mellitus and Hashimoto's thyroiditis, among others.

<span class="mw-page-title-main">Irritable bowel syndrome</span> Functional gastrointestinal disorder

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by a group of symptoms that commonly include abdominal pain, abdominal bloating and changes in the consistency of bowel movements. These symptoms may occur over a long time, sometimes for years. IBS can negatively affect quality of life and may result in missed school or work or reduced productivity at work. Disorders such as anxiety, major depression, and chronic fatigue syndrome are common among people with IBS.

<span class="mw-page-title-main">Gluten-free diet</span> Diet excluding proteins found in wheat, barley, and rye

A gluten-free diet (GFD) is a nutritional plan that strictly excludes gluten, which is a mixture of prolamin proteins found in wheat, as well as barley, rye, and oats. The inclusion of oats in a gluten-free diet remains controversial, and may depend on the oat cultivar and the frequent cross-contamination with other gluten-containing cereals.

<span class="mw-page-title-main">Fructose malabsorption</span> Medical condition

Fructose malabsorption, formerly named dietary fructose intolerance (DFI), is a digestive disorder in which absorption of fructose is impaired by deficient fructose carriers in the small intestine's enterocytes. This results in an increased concentration of fructose. Intolerance to fructose was first identified and reported in 1956.

Indigestion, also known as dyspepsia or upset stomach, is a condition of impaired digestion. Symptoms may include upper abdominal fullness, heartburn, nausea, belching, or upper abdominal pain. People may also experience feeling full earlier than expected when eating. Indigestion is relatively common, affecting 20% of people at some point during their life, and is frequently caused by gastroesophageal reflux disease (GERD) or gastritis.

Food intolerance is a detrimental reaction, often delayed, to a food, beverage, food additive, or compound found in foods that produces symptoms in one or more body organs and systems, but generally refers to reactions other than food allergy. Food hypersensitivity is used to refer broadly to both food intolerances and food allergies.

<span class="mw-page-title-main">Gliadin</span> Protein in wheat & other cereals

Gliadin is a class of proteins present in wheat and several other cereals within the grass genus Triticum. Gliadins, which are a component of gluten, are essential for giving bread the ability to rise properly during baking. Gliadins and glutenins are the two main components of the gluten fraction of the wheat seed. This gluten is found in products such as wheat flour. Gluten is split about evenly between the gliadins and glutenins, although there are variations found in different sources.

Abdominal bloating is a short-term disease that affects the gastrointestinal tract. Bloating is generally characterized by an excess buildup of gas, air or fluids in the stomach. A person may have feelings of tightness, pressure or fullness in the stomach; it may or may not be accompanied by a visibly distended abdomen. Bloating can affect anyone of any age range and is usually self-diagnosed, in most cases does not require serious medical attention or treatment. Although this term is usually used interchangeably with abdominal distension, these symptoms probably have different pathophysiological processes, which are not fully understood.

<span class="mw-page-title-main">Eosinophilic esophagitis</span> Allergic inflammatory condition of the esophagus

Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus that involves eosinophils, a type of white blood cell. In healthy individuals, the esophagus is typically devoid of eosinophils. In EoE, eosinophils migrate to the esophagus in large numbers. When a trigger food is eaten, the eosinophils contribute to tissue damage and inflammation. Symptoms include swallowing difficulty, food impaction, vomiting, and heartburn.

Intestinal permeability is a term describing the control of material passing from inside the gastrointestinal tract through the cells lining the gut wall, into the rest of the body. The intestine normally exhibits some permeability, which allows nutrients to pass through the gut, while also maintaining a barrier function to keep potentially harmful substances from leaving the intestine and migrating to the body more widely. In a healthy human intestine, small particles can migrate through tight junction claudin pore pathways, and particles up to 10–15 Å can transit through the paracellular space uptake route. There is some evidence abnormally increased intestinal permeability may play a role in some chronic diseases and inflammatory conditions. The most well understood condition with observed increased intestinal permeability is celiac disease.

The specific carbohydrate diet (SCD) is a restrictive diet originally created to manage celiac disease; it limits the use of complex carbohydrates. Monosaccharides are allowed, and various foods including fish, aged cheese and honey are included. Prohibited foods include cereal grains, potatoes and lactose-containing dairy products. It is a gluten-free diet since no grains are permitted.

<span class="mw-page-title-main">Wheat allergy</span> Medical condition

Wheat allergy is an allergy to wheat which typically presents itself as a food allergy, but can also be a contact allergy resulting from occupational exposure. Like all allergies, wheat allergy involves immunoglobulin E and mast cell response. Typically the allergy is limited to the seed storage proteins of wheat. Some reactions are restricted to wheat proteins, while others can react across many varieties of seeds and other plant tissues. Wheat allergy is rare. Prevalence in adults was estimated to be 0.21% in a 2012 study in Japan.

<span class="mw-page-title-main">Gluten-related disorders</span> Set of diseases caused by gluten exposure

Gluten-related disorders is the term for the diseases triggered by gluten, including celiac disease (CD), non-celiac gluten sensitivity (NCGS), gluten ataxia, dermatitis herpetiformis (DH) and wheat allergy. The umbrella category has also been referred to as gluten intolerance, though a multi-disciplinary physician-led study, based in part on the 2011 International Coeliac Disease Symposium, concluded that the use of this term should be avoided due to a lack of specificity.

Gluten-sensitive enteropathy–associated conditions are comorbidities or complications of gluten-related gastrointestinal distress. GSE has key symptoms typically restricted to the bowel and associated tissues; however, there are a wide variety of associated conditions. These include bowel disorders, eosinophilic gastroenteritis and increase with coeliac disease (CD) severity. With some early onset and a large percentage of late onset disease, other disorders appear prior to the coeliac diagnosis or allergic-like responses markedly increased in GSE. Many of these disorders persist on a strict gluten-free diet, and are thus independent of coeliac disease after triggering. For example, autoimmune thyroiditis is a common finding with GSE.

Oat sensitivity represents a sensitivity to the proteins found in oats, Avena sativa. Sensitivity to oats can manifest as a result of allergy to oat seed storage proteins either inhaled or ingested. A more complex condition affects individuals who have gluten-sensitive enteropathy in which there is an autoimmune response to avenin, the glutinous protein in oats similar to the gluten within wheat. Sensitivity to oat foods can also result from their frequent contamination by wheat, barley, or rye particles.

FODMAPs or fermentable oligosaccharides, disaccharides, monosaccharides, and polyols are short-chain carbohydrates that are poorly absorbed in the small intestine and ferment in the colon. They include short-chain oligosaccharide polymers of fructose (fructans) and galactooligosaccharides, disaccharides (lactose), monosaccharides (fructose), and sugar alcohols (polyols), such as sorbitol, mannitol, xylitol, and maltitol. Most FODMAPs are naturally present in food and the human diet, but the polyols may be added artificially in commercially prepared foods and beverages.

The gluten challenge test is a medical test in which gluten-containing foods are consumed and (re-)occurrence of symptoms is observed afterwards to determine whether and how much a person reacts to these foods. The test may be performed in people with suspected gluten-related disorders in very specific occasions and under medical supervision, for example in people who had started a gluten-free diet without performing duodenal biopsy.

<span class="mw-page-title-main">Carlo Catassi</span> Italian gastroenterologist, epidemiologist, and researcher

Carlo Catassi was born in April 19, 1953. He is an Italian gastroenterologist, epidemiologist and a researcher, known for international studies on the epidemiology of celiac disease. Currently, he is the Head of the Department of Pediatrics at the Università Politecnica delle Marche in Ancona, Italy, and a Visiting Scientist at Massachusetts General Hospital in Boston, United States. From 2013 to 2016, he served as the President of the Italian Society of Pediatric Gastroenterology, Hepatology and Nutrition (SIGENP). His research includes contributions to understanding the clinical spectrum of celiac disease and other gluten-related disorders.

A low-FODMAP diet is a person's global restriction of consumption of all fermentable carbohydrates (FODMAPs), recommended only for a short time. A low-FODMAP diet is recommended for managing patients with irritable bowel syndrome (IBS) and can reduce digestive symptoms of IBS including bloating and flatulence.

References

  1. 1 2 3 4 5 Zis P, Hadjivassiliou M (26 February 2019). "Treatment of Neurological Manifestations of Gluten Sensitivity and Coeliac Disease". Curr Treat Options Neurol (Review). 21 (3): 10. doi: 10.1007/s11940-019-0552-7 . PMID   30806821. S2CID   73466457.
  2. 1 2 Catassi C (2015). "Gluten Sensitivity". Ann Nutr Metab (Review). 67 Suppl 2 (2): 16–26. doi: 10.1159/000440990 . PMID   26605537.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Fasano A, Sapone A, Zevallos V, Schuppan D (May 2015). "Nonceliac gluten sensitivity". Gastroenterology (Review). 148 (6): 1195–204. doi: 10.1053/j.gastro.2014.12.049 . PMID   25583468. Cereals such as wheat and rye, when consumed in normal quantities, are only minor sources of FODMAPs in the daily diet. (...) Table 1. Sources of FODMAPs (...) Oligosaccharides (fructans and/or galactans). Cereals: wheat and rye when eaten in large amounts (eg, bread, pasta, couscous, crackers, biscuits)
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Catassi C, Bai J, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J, Francavilla R, Elli L, Green P, Holtmeier W, Koehler P, Koletzko S, Meinhold C, Sanders D, Schumann M, Schuppan D, Ullrich R, Vécsei A, Volta U, Zevallos V, Sapone A, Fasano A (2013). "Non-celiac gluten sensitivity: the new frontier of gluten related disorders". Nutrients (Review). 5 (10): 3839–53. doi: 10.3390/nu5103839 . PMC   3820047 . PMID   24077239. Gluten sensitivity (GS) was originally described in the 1980s [1] and a recently "re-discovered" syndrome entity, characterized by intestinal and extraintestinal symptoms related to the ingestion of gluten-containing food, in subjects that are not affected with either celiac disease (CD) or wheat allergy (WA).
  5. 1 2 3 4 5 Lebwohl B, Ludvigsson JF, Green PH (Oct 2015). "Celiac disease and non-celiac gluten sensitivity". BMJ (Review). 351: h4347. doi:10.1136/bmj.h4347. PMC   4596973 . PMID   26438584.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Volta U, Caio G, De Giorgio R, Henriksen C, Skodje G, Lundin KE (Jun 2015). "Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders". Best Pract Res Clin Gastroenterol (Review). 29 (3): 477–91. doi:10.1016/j.bpg.2015.04.006. PMID   26060112.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Aziz I, Hadjivassiliou M, Sanders DS (Sep 2015). "The spectrum of noncoeliac gluten sensitivity". Nat Rev Gastroenterol Hepatol (Review). 12 (9): 516–26. doi:10.1038/nrgastro.2015.107. PMID   26122473. S2CID   2867448.
  8. Watkins RD, Zawahir S (2017). "Celiac Disease and Nonceliac Gluten Sensitivity". Pediatr Clin North Am (Review). 64 (3): 563–576. doi:10.1016/j.pcl.2017.01.013. PMID   28502438.
  9. 1 2 3 4 5 6 Volta U, De Giorgio R, Caio G, Uhde M, Manfredini R, Alaedini A (2019). "Nonceliac Wheat Sensitivity: An Immune-Mediated Condition with Systemic Manifestations". Gastroenterol Clin North Am (Review). 48 (1): 165–182. doi:10.1016/j.gtc.2018.09.012. PMC   6364564 . PMID   30711208.
  10. 1 2 3 4 5 6 7 Volta U, Caio G, Tovoli F, De Giorgio R (2013). "Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness". Cellular and Molecular Immunology (Review). 10 (5): 383–392. doi:10.1038/cmi.2013.28. PMC   4003198 . PMID   23934026.
  11. 1 2 3 4 5 6 7 8 Schuppan D, Pickert G, Ashfaq-Khan M, Zevallos V (Jun 2015). "Non-celiac wheat sensitivity: differential diagnosis, triggers and implications". Best Pract Res Clin Gastroenterol (Review). 29 (3): 469–76. doi:10.1016/j.bpg.2015.04.002. PMID   26060111.
  12. 1 2 3 4 5 6 Green PH, Lebwohl B, Greywoode R (May 2015). "Celiac disease". J Allergy Clin Immunol. 135 (5): 1099–106. doi:10.1016/j.jaci.2015.01.044. PMID   25956012. S2CID   21552589.
  13. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Molina-Infante J, Santolaria S, Sanders DS, Fernández-Bañares F (May 2015). "Systematic review: noncoeliac gluten sensitivity". Aliment Pharmacol Ther (Review). 41 (9): 807–20. doi:10.1111/apt.13155. PMID   25753138. S2CID   207050854.
  14. 1 2 3 Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, Hadjivassiliou M, Kaukinen K, Kelly CP, Leonard JN, Lundin KE, Murray JA, Sanders DS, Walker MM, Zingone F, Ciacci C (January 2013). "The Oslo definitions for coeliac disease and related terms". Gut (Consensus Development Conference. Research Support, N.I.H., Extramural. Research Support, Non-U.S. Gov't). 62 (1): 43–52. doi:10.1136/gutjnl-2011-301346. PMC   3440559 . PMID   22345659.
  15. Fasano A, Sapone A, Zevallos V, Schuppan D (May 2015). "Nonceliac gluten sensitivity". Gastroenterology (Review). 148 (6): 1195–204. doi: 10.1053/j.gastro.2014.12.049 . PMID   25583468. Since 2010, the definition of NCGS has been discussed at 3 consensus conferences, which led to 3 publications. Given the uncertainties about this clinical entity and the lack of diagnostic biomarkers, all 3 reports concluded that NCGS should be defined by the following exclusionary criteria: a clinical entity induced by the ingestion of gluten leading to intestinal and/or extraintestinal symptoms that resolve once the gluten-containing foodstuff is eliminated from the diet, and when celiac disease and wheat allergy have been ruled out.
  16. 1 2 Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012). "Spectrum of gluten-related disorders: consensus on new nomenclature and classification". BMC Medicine (Review). 10: 13. doi: 10.1186/1741-7015-10-13 . PMC   3292448 . PMID   22313950. Open Access logo PLoS transparent.svg
  17. Volta U, Caio G, De Giorgio R, Henriksen C, Skodje G, Lundin KE (Jun 2015). "Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders". Best Pract Res Clin Gastroenterol (Review). 29 (3): 477–91. doi:10.1016/j.bpg.2015.04.006. PMID   26060112. According to the diagnostic criteria established by two Consensus Conferences (London 2011 and Munich 2012), the current view to NCGS diagnosis is based on symptom / manifestation evaluation along with the exclusion of CD and WA [5,7].
  18. Khan, Anam; Gould Suarez, Milena; Murray, Joseph (August 2020). "Nonceliac Gluten and Wheat Sensitivity". Clin Gastroenterol Hepatol. 18 (9): 1913–22.e1. doi:10.1016/j.cgh.2019.04.009. PMID   30978535. S2CID   195661537. However, there is a great deal of skepticism within the scientific community questioning the existence of NCGS as a distinct clinical disorder. There are no strict diagnostic criteria and a placebo-controlled rechallenge trial has been recommended for diagnosis
  19. 1 2 3 Elli L, Roncoroni L, Bardella MT (2015). "Non-celiac gluten sensitivity: Time for sifting the grain". World J Gastroenterol. 21 (27): 8221–6. doi: 10.3748/wjg.v21.i27.8221 . PMC   4507091 . PMID   26217073.
  20. 1 2 3 Leonard MM, Sapone A, Catassi C, Fasano A (2017). "Celiac Disease and Nonceliac Gluten Sensitivity: A Review". JAMA (Review). 318 (7): 647–656. doi:10.1001/jama.2017.9730. PMID   28810029. S2CID   205094729. Previous studies have shown that gliadin can cause an immediate and transient increase in gut permeability. This permeating effect is secondary to the binding of specific undigestible gliadin fragments to the CXCR3 chemokine receptor with subsequent release of zonulin, a modulator of intercellular tight junctions. This process takes place in all individuals who ingest gluten.
  21. 1 2 3 4 5 6 7 8 9 10 11 12 Verbeke, K (February 2018). "Nonceliac Gluten Sensitivity: What Is the Culprit?". Gastroenterology. 154 (3): 471–3. doi: 10.1053/j.gastro.2018.01.013 . PMID   29337156.
  22. 1 2 3 4 5 6 7 8 9 10 Ontiveros N, Hardy MY, Cabrera-Chavez F (2015). "Assessing of Celiac Disease and Nonceliac Gluten Sensitivity". Gastroenterology Research and Practice (Review). 2015: 1–13. doi: 10.1155/2015/723954 . PMC   4429206 . PMID   26064097.
  23. 1 2 3 4 5 Vriezinga SL, Schweizer JJ, Koning F, Mearin ML (Sep 2015). "Coeliac disease and gluten-related disorders in childhood". Nat Rev Gastroenterol Hepatol (Review). 12 (9): 527–36. doi:10.1038/nrgastro.2015.98. PMID   26100369. S2CID   2023530. NCGS is a clinical condition in which intestinal and extraintestinal symptoms are triggered by gluten ingestion, in the absence of coeliac disease and wheat allergy. The symptoms usually occur soon after gluten ingestion, improve or disappear within hours or a few days after gluten withdrawal, and relapse following its reintroduction. ... Unlike coeliac disease and wheat allergy, NCGS is an unclear and controversial entity.
  24. 1 2 Fasano A, Sapone A, Zevallos V, Schuppan D (May 2015). "Nonceliac gluten sensitivity". Gastroenterology (Review). 148 (6): 1195–204. doi: 10.1053/j.gastro.2014.12.049 . PMID   25583468. One of the most controversial and highly debated discussions concerns the role of gluten in causing NCGS. Recent reports have indicated that gluten might not be the cause of NCGS, and some investigators still question whether NCGS as a real clinical entity. (...) Cereals such as wheat and rye, when consumed in normal quantities, are only minor sources of FODMAPs in the daily diet (Table 1). Therefore, gluten-containing grains are not likely to induce IBS exclusively via FODMAPs. In contrast, there is growing evidence that other proteins that are unique to gluten-containing cereals can elicit an innate immune response that leads to NCGS, raising a nomenclature issue. For this reason, wheat sensitivity, rather than gluten sensitivity, seems to be a more appropriate term, keeping in mind that other gluten-containing grains such as barley and rye also can trigger the symptoms.
  25. 1 2 Makharia A, Catassi C, Makharia GK (2015). "The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma". Nutrients. 7 (12): 10417–26. doi: 10.3390/nu7125541 . PMC   4690093 . PMID   26690475.
  26. Czaja-Bulsa G (Apr 2015). "Non coeliac gluten sensitivity – A new disease with gluten intolerance". Clin Nutr (Review). 34 (2): 189–94. doi: 10.1016/j.clnu.2014.08.012 . PMID   25245857. The new syndrome has been named non-celiac gluten sensitivity (NCGS) or gluten sensitivity (GS).
  27. Costantino A, Aversano GM, Lasagni G, Smania V, Doneda L, Vecchi M, Roncoroni L, Pastorello EA, Elli L (2022). "Diagnostic management of patients reporting symptoms after wheat ingestion". Front Nutr. 9: 1007007. doi: 10.3389/fnut.2022.1007007 . PMC   9582535 . PMID   36276818.
  28. Verdu EF, Armstrong D, Murray JA (2009). "Between celiac disease and irritable bowel syndrome: the "no man's land" of gluten sensitivity". Am J Gastroenterol (Review). 104 (6): 1587–94. doi:10.1038/ajg.2009.188. PMC   3480312 . PMID   19455131.
  29. 1 2 3 4 5 6 Mansueto, Pasquale; Seidita, Aurelio; D'Alcamo, Alberto; Carroccio, Antonio (2014). "Non-Celiac Gluten Sensitivity: Literature Review" (PDF). Journal of the American College of Nutrition (Review). 33 (1): 39–54. doi:10.1080/07315724.2014.869996. hdl: 10447/90208 . PMID   24533607. S2CID   22521576.
  30. 1 2 3 4 5 6 7 8 Tonutti E, Bizzaro N (2014). "Diagnosis and classification of celiac disease and gluten sensitivity". Autoimmun Rev (Review). 13 (4–5): 472–6. doi:10.1016/j.autrev.2014.01.043. PMID   24440147.
  31. 1 2 3 Nijeboer P, Bontkes HJ, Mulder CJ, Bouma G (December 2013). "Non-celiac gluten sensitivity. Is it in the gluten or the grain?". Journal of Gastrointestinal and Liver Diseases (Review). 22 (4): 435–40. PMID   24369326.
  32. 1 2 3 4 5 Fasano, A; Catassi, C (Dec 20, 2012). "Clinical practice. Celiac disease". The New England Journal of Medicine (Review). 367 (25): 2419–26. doi:10.1056/NEJMcp1113994. PMID   23252527.
  33. Rossi A, Di Lollo AC, Guzzo MP, Giacomelli C, Atzeni F, Bazzichi L, Di Franco M (2015). "Fibromyalgia and nutrition: what news?". Clin Exp Rheumatol (Review). 33 (1 Suppl 88): S117–25. PMID   25786053.
  34. 1 2 Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, Hadjivassiliou M, Hampe CS, et al. (2016). "Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias". Cerebellum (Review). 15 (2): 213–32. doi:10.1007/s12311-015-0664-x. PMC   4591117 . PMID   25823827.
  35. 1 2 3 4 5 Catassi, C; Elli, L; Bonaz, B; Bouma, G; Carroccio, A; Castillejo, G; Cellier, C; Cristofori, F; De Magistris, L; Dolinsek, J; Dieterich, W; Francavilla, R; Hadjivassiliou, M; Holtmeier, W; Körner, U; Leffler, D. A.; Lundin, K. E.; Mazzarella, G; Mulder, C. J.; Pellegrini, N; Rostami, K; Sanders, D; Skodje, G. I.; Schuppan, D; Ullrich, R; Volta, U; Williams, M; Zevallos, V. F.; Zopf, Y; Fasano, A (2015). "Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts' Criteria". Nutrients. 7 (6): 4966–77. doi: 10.3390/nu7064966 . PMC   4488826 . PMID   26096570.
  36. Bressan, Paola; Kramer, Peter (2016). "Bread and Other Edible Agents of Mental Disease". Frontiers in Human Neuroscience. 10: 130. doi: 10.3389/fnhum.2016.00130 . PMC   4809873 . PMID   27065833.
  37. 1 2 3 Vinagre-Aragón A, Zis P, Grunewald RA, Hadjivassiliou M (2018). "Movement Disorders Related to Gluten Sensitivity: A Systematic Review". Nutrients (Systematic Review). 10 (8): 1034. doi: 10.3390/nu10081034 . PMC   6115931 . PMID   30096784.
  38. Fasano A (Jan 2011). "Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer". Physiol. Rev. (Review). 91 (1): 151–75. CiteSeerX   10.1.1.653.3967 . doi:10.1152/physrev.00003.2008. PMID   21248165.
  39. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Elli L, Branchi F, Tomba C, Villalta D, Norsa L, Ferretti F, Roncoroni L, Bardella MT (Jun 2015). "Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity". World J Gastroenterol. 21 (23): 7110–9. doi: 10.3748/wjg.v21.i23.7110 . PMC   4476872 . PMID   26109797.
  40. 1 2 Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D. A.; Zevallos, V.; Libermann, T. A.; Dillon, S.; Freitag, T. L.; Kelly, C. P.; Schuppan, D. (2012). "Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4". Journal of Experimental Medicine. 209 (13): 2395–2408. doi:10.1084/jem.20102660. PMC   3526354 . PMID   23209313. more recent breeding of high yielding and highly pest-resistant wheat […] has led to a drastic increase of ATI content. […] Our finding of ATI as a potent stimulator of TLR4 in the intestine might not only be relevant to celiac disease, but is likely to have implications for patients with so-called gluten sensitivity and possibly for patients with irritable bowel syndrome, inflammatory bowel disease, and even nonintestinal inflammation.
  41. Kucek, Lisa Kissing; Veenstra, Lynn D.; Amnuaycheewa, Plaimein; Sorrells, Mark E. (2015). "A Grounded Guide to Gluten: How Modern Genotypes and Processing Impact Wheat Sensitivity". Comprehensive Reviews in Food Science and Food Safety. 14 (3): 285–302. doi: 10.1111/1541-4337.12129 . ISSN   1541-4337. PMID   33401796.
  42. Ontiveros N, Hardy MY, Cabrera-Chavez F (2015). "Assessing of Celiac Disease and Nonceliac Gluten Sensitivity". Gastroenterology Research and Practice (Review). 2015: 1–13. doi: 10.1155/2015/723954 . PMC   4429206 . PMID   26064097. The literature suggests that FODMAPs and not gluten per se are the triggers of gastrointestinal symptoms in patients that fit most of the proposed NCGS definitions
  43. Gibson PR, Shepherd SJ (February 2010). "Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach". Journal of Gastroenterology and Hepatology. 25 (2): 252–8. doi: 10.1111/j.1440-1746.2009.06149.x . PMID   20136989. Wheat is a major source of fructans in the diet. (...) Table 1 Food sources of FODMAPs. (...) Oligosaccharides (fructans and/or galactans). Cereals: wheat & rye when eaten in large amounts (e.g. bread, pasta, couscous, crackers, biscuits)
  44. Caio, Giacomo; Volta, Umberto; Sapone, Anna; Leffler, Daniel A.; De Giorgio, Roberto; Catassi, Carlo; Fasano, Alessio (2019-07-23). "Celiac disease: a comprehensive current review". BMC Medicine. 17 (1): 142. doi: 10.1186/s12916-019-1380-z . PMC   6647104 . PMID   31331324.
  45. Rodrigo L, Garrote JA, Vivas S (Sep 6, 2008). "[Celiac disease] [Article in Spanish]". Med Clin (Barc). 131 (7): 264–70. doi:10.1016/S0025-7753(08)72247-4. PMID   18775218.
  46. Fasano A (Apr 2005). "Clinical presentation of celiac disease in the pediatric population". Gastroenterology. 128 (4 Suppl 1): S68–73. doi:10.1053/j.gastro.2005.02.015. PMID   15825129.
  47. 1 2 Lundin KE, Wijmenga C (Sep 2015). "Coeliac disease and autoimmune disease-genetic overlap and screening". Nat Rev Gastroenterol Hepatol. 12 (9): 507–15. doi:10.1038/nrgastro.2015.136. PMID   26303674. S2CID   24533103.
  48. Genuis SJ, Lobo RA (2014). "Gluten Sensitivity Presenting as a Neuropsychiatric Disorder". Gastroenterology Research and Practice (Review). 2014: 1–6. doi: 10.1155/2014/293206 . PMC   3944951 . PMID   24693281.
  49. 1 2 Hadjivassiliou M, Grünewald RA, Davies-Jones GA (2002). "Gluten sensitivity as a neurological illness". J Neurol Neurosurg Psychiatry (Review). 72 (5): 560–3. doi:10.1136/jnnp.72.5.560. PMC   1737870 . PMID   11971034.
  50. Hadjivassiliou M, Sanders DD, Aeschlimann DP (2015). "Gluten-related disorders: gluten ataxia". Dig Dis (Review). 33 (2): 264–8. doi:10.1159/000369509. PMID   25925933. S2CID   207673823.
  51. Richard Mackarness (January, 1976), Not All in the Mind, Macmillan, ISBN   978-0330245920
  52. Cooper BT, Holmes GK, Ferguson R, Thompson RA, Cooke WT (1976). "Proceeding: Chronic diarrhoea and gluten sensitivity". Gut. 17 (5): 385–402. doi: 10.1136/gut.17.5.385 . PMC   1411128 . PMID   1278762. On clinical and biopsy evidence, these patients are sensitive to gluten; therefore making a definition of coeliac disease even more difficult
  53. Ellis A, Linaker BD (1978). "Non-coeliac gluten sensitivity?". Lancet. 1 (8078): 1358–9. doi:10.1016/s0140-6736(78)92427-3. PMID   78118. S2CID   53267087.
  54. Cooper BT, Holmes GK, Ferguson R, Thompson RA, Allan RN, Cooke WT (1980). "Gluten-sensitive diarrhea without evidence of celiac disease". Gastroenterology. 79 (5 Pt 1): 801–6. doi: 10.1016/0016-5085(80)90432-1 . PMID   7419003.
  55. Reinagel, Monica. "Is non-celiac gluten sensitivity for real?". Scientific American. Retrieved 9 April 2016.
  56. Springen, Karen. "Are gluten-free diets healthier, or is it hype?". Newsweek. Retrieved 9 April 2016.
  57. Volta U, Caio G, Karunaratne TB, Alaedini A, De Giorgio R (2017). "Non-coeliac gluten/wheat sensitivity: advances in knowledge and relevant questions". Expert Rev Gastroenterol Hepatol (Review). 11 (1): 9–18. doi:10.1080/17474124.2017.1260003. PMID   27852116. S2CID   34881689.
  58. 1 2 Lebwohl B, Ludvigsson JF, Green PH (Oct 2015). "Celiac disease and non-celiac gluten sensitivity". BMJ (Review). 5: 351:h4347. doi:10.1136/bmj.h4347. PMC   4596973 . PMID   26438584.
  59. 1 2 3 Nash DT, Slutzky AR (2014). "Gluten sensitivity: new epidemic or new myth?". Proc (Bayl Univ Med Cent). 27 (4): 377–8. doi:10.1080/08998280.2014.11929164. PMC   4255872 . PMID   25484517.
  60. 1 2 Shewry PR, Hey SJ (2016). "Do we need to worry about eating wheat?". Nutr Bull. 41 (1): 6–13. doi:10.1111/nbu.12186. PMC   4760426 . PMID   26941586.
  61. Jones AL (2017). "The Gluten-Free Diet: Fad or Necessity?". Diabetes Spectrum. 30 (2): 118–123. doi:10.2337/ds16-0022. PMC   5439366 . PMID   28588378.
  62. "Is gluten-free a lifestyle or a diet craze?". USA Today . 5 March 2013. Retrieved 4 April 2018.
  63. "An increasing number of Australians are choosing a gluten-free diet". Herald Sun . 18 November 2014. Retrieved 4 April 2018.
  64. Reilly NR (2016). "The Gluten-Free Diet: Recognizing Fact, Fiction, and Fad". J Pediatr. 175: 206–10. doi: 10.1016/j.jpeds.2016.04.014 . PMID   27185419.
  65. Zaraska, Marta. "For many, gluten isn't the villain it gets cracked up to be". Washington Post. Retrieved 9 April 2016.
  66. "Fad or fact — gluten-free?". Core health. Retrieved 9 April 2016.
  67. Volta U, De Giorgio R (2012). "New understanding of gluten sensitivity". Nature Reviews Gastroenterology & Hepatology (Review). 9 (5): 295–9. doi:10.1038/nrgastro.2012.15. PMID   22371218. S2CID   205487297.
  68. Biesiekierski JR, Muir JG, Gibson PR (2013). "Is gluten a cause of gastrointestinal symptoms in people without celiac disease?". Current Allergy and Asthma Reports (Review). 13 (6): 631–8. doi:10.1007/s11882-013-0386-4. PMID   24026574. S2CID   41014087.
  69. Caio G, Volta U, Tovoli F, De Giorgio R (2014). "Effect of gluten free diet on immune response to gliadin in patients with non-celiac gluten sensitivity". BMC Gastroenterology (Research Support, Non-U.S. Gov't). 14 (1): 26. doi: 10.1186/1471-230X-14-26 . PMC   3926852 . PMID   24524388.
  70. Branchi F, Aziz I, Conte D, Sanders DS (2015). "Noncoeliac gluten sensitivity: a diagnostic dilemma". Current Opinion in Clinical Nutrition and Metabolic Care (Review). 18 (5): 508–14. doi:10.1097/MCO.0000000000000207. PMID   26147528. S2CID   22402914.
  71. Di Sabatino A, Volta U, Salvatore C, Biancheri P, Caio G, De Giorgio R, Di Stefano M, Corazza GR (2015). "Small Amounts of Gluten in Subjects with Suspected Nonceliac Gluten Sensitivity: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Trial". Clinical Gastroenterology and Hepatology. 13 (9): 1604–12. doi:10.1016/j.cgh.2015.01.029. hdl: 11392/2375087 . PMID   25701700.