Tattoo machine

Last updated
Illustration of artist working on a traditional sailor tattoo Tattoo (PSF).png
Illustration of artist working on a traditional sailor tattoo

A tattoo machine (colloquially referred to as a tattoo gun) is a hand-held device generally used to create a tattoo, a permanent marking of the skin with indelible ink. Modern tattoo machines use electromagnetic coils to move an armature bar up and down. Connected to the armature bar is a barred needle grouping that opens the skin for the ink to flow into. All electromagnetic coil machines are powered by a wired regulated DC power supplies which send an electric current through the copper coils wrapped around opposing magnets and then moves the armature bar up and down. In addition to coil tattoo machines, there are also rotary tattoo machines, which are operated with regulated rotary motors and are powered by a wired external RC power supply or a wireless battery pack attached to the machine. There are many types of rotary machines, some that look similar to coil machines and some that look more like "pens". Coil machines are usually each tuned for a single function, such as for shading, or lining or packing ink. Rotary machines are multifunctional, taking any size or type of needle or cartridge needle. "The basic machine is pretty much unchanged today, in recent years variations of the theme have crept into the market, namely Manfred Kohrs' rotary machine of 1978 or Carson Hill’s pneumatic machine that uses compressed air rather than electricity, but the principle is essentially the same." [1]

Contents

History

Traditional and modern tools at the Museum of Art and Design Hamburg; see history of tattooing Tattoo MKG Hamburg 2015.jpg
Traditional and modern tools at the Museum of Art and Design Hamburg; see history of tattooing

The predecessor to the tattoo machine was Thomas Edison's electric pen, patented under the title Stencil-Pens in Newark, New Jersey, United States in 1876. [2] It was originally intended to be used as a duplicating device, but in 1891, Samuel O'Reilly discovered that Edison's machine could be modified and used to introduce ink into the skin, and later patented a tube and needle system to provide an ink reservoir.

While O'Reilly's machine was based on the tattoo rotary technology of Edison's device, modern tattoo machines use electromagnets. The first machine based on this technology was a single coil machine patented by Thomas Riley of London, just twenty days after O'Reilly filed the patent for his rotary machine. For his machine, Riley placed a modified doorbell assembly in a brass box. The modern two-coil configuration was patented by Alfred Charles South, also of London. Because it was so heavy, a spring was often attached to the top of the machine and the ceiling to take most of the weight off the operator's hand.

″To move tattooing forward, German tattoo artist Manfred Kohrs had to take a look backward.″ In 1978, Kohrs "introduced the first new design for a rotary machine in nearly a century. His machine was functionally similar to O'Reilly's except an electric DC motor, rather than electrified magnets, drove the needles. This slimmer and streamlined version became lighter, quieter, and more portable. It also gave artists more control while ensuring the operator's hands and fingers cramped less. While some artists gravitated to this rotary revival, others preferred to stick with their trusty coil machines." [3] [4] [5]

Most modern tattoo machines can control needle depth, speed, and force of application, which has allowed tattooing to become a very precise art form. Such advances in precision have also produced a style of facial tattooing that has attained mainstream popularity in America called dermapigmentation, or "permanent cosmetics" creating results such as addition/removal of freckles, beauty spots and scars.

Classification

There are many types of machines. Liners and shaders are the more common machines from a technical standpoint. Mechanically, there are coil tattoo machines; also pneumatic machines, and rotary, or linear, tattoo machines.

Tattoo machines are not limited to just these types. A common variant is having a "cutback", which uses stiffer front springs. This is more commonly used in liners, but is known to be used on shader machines, more typically for portrait work. Machines are usually categorized into long stroke and short stroke varieties. The longer-stroked machines are good for coloring and shading, as well as sculpting lines, while doing less damage to clients' skin. Shorter-stroke machines are commonly used for lining in a single pass style, and also in a shader setup to achieve a more subtle gradation of black such as would be found in portraits. Length, width, tension, angle, and stiffness of the spring varies the functionality of the machine. The contact gaps, as well as capacitors and even the style of machine and its angles of deflection, can also all be variants in machine tuning. The proper tuning of the machine is essential for the type of machine being used, also for the type of tattoo the artist is doing.

Coil machine mechanisms

Coil tattoo machines function by passing current through two coils which alternate electromagnetic forces to move the tattoo needle up and down rapidly. [9] Power supplies adapt AC current to power the machine. This allows artists to control the voltage at which their machines operate at and can be manipulated to achieve line variation. [10] Coil machines consist of about fifteen different parts including but not limited to the needle, tube, tube grip, tube clamp, needle bar, armature bar, front spring, contact screw, o-ring, rear spring, rear spring mounting screw, and a yoke. These parts are held together with a frame. Frames are constructed from a wide variety of materials such as brass, iron, steel, zinc, and aluminum. The type of frame used heavily influences the overall operation of the tattoo machine. Some frames (such as those constructed from iron or brass) reduce vibration during operation. Other lighter frames (such as those constructed from aluminum and zinc) reduce the physical strain on artists during operation. Improper frame selection/alignment affect the longevity and quality of a coil machine’s overall function. Coil tattoo machines give artists a high degree of control over every aspect of the machine’s function. This requires artists to be intimately knowledgeable about their machines to efficiently utilize such a device.

Rotary machine mechanisms

Rotary tattoo machines function by using the rotational motion of an electric motor to move a needle/bundle of tattoo needles up and down rapidly. [9] Rotary machines, like coil machines, require a power supply that adapt AC current to power the machine. This voltage may be manipulated to achieve line variation. [10] Rotary machines consist of about seven different parts including but not limited to the grip, tube, cam wheel, “adjustment mechanism”, and a power connection. Rotary machines vary in the type of needle they use. Common rotary machines use standard needles but can also use cartridge needles. This differs from the more traditional “coil tattoo machine” as one rotary machine can be used for both lining and shading. Rotary machines can be purchased pre-aligned and generally work “out of the box”. This makes them more beginner friendly. The electric motor that drives the needle up and down reduces the operational vibration of the machine and thusly reduces the physical strain of tattooing on artists. Rotary machines of all types typically produce less noise and vibration during operation. [11] Coil machines produce a sort of buzzing noise that has commonly been associated with tattooing. Clients sometimes feel more comfortable being tattooed using a rotary machine due to how quiet the machines are. Rotary machines come in a variety of types. Direct drive rotary machines connect the needle bar directly to the motor. Eccentric rotary machines use an eccentric cam drive that converts the rotational movement of the motor to an oscillating motion which in turn drives the needle. Pneumatic rotary machines, as their name implies, utilize compressed air to directly oscillate the tattoo needle and do not use an electric motor whatsoever.

Selected bibliography

Related Research Articles

<span class="mw-page-title-main">Electromagnetic coil</span> Electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, sensor coils such as in medical MRI imaging machines. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is a machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Commutator (electric)</span> Device for changing direction of current

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

<span class="mw-page-title-main">Stator</span> Stationary part of a system

The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors, or biological rotors. Energy flows through a stator to or from the rotating component of the system, the rotor. In an electric motor, the stator provides a magnetic field that drives the rotating armature; in a generator, the stator converts the rotating magnetic field to electric current. In fluid powered devices, the stator guides the flow of fluid to or from the rotating part of the system.

<span class="mw-page-title-main">Rotating magnetic field</span> Resultant magnetic field

A rotating magnetic field (RMF) is the resultant magnetic field produced by a system of coils symmetrically placed and supplied with polyphase currents. A rotating magnetic field can be produced by a poly-phase (two or more phases) current or by a single phase current provided that, in the latter case, two field windings are supplied and are so designed that the two resulting magnetic fields generated thereby are out of phase.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Pneumatic motor</span> Compressed-air engine

A pneumatic motor, or compressed-air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed-air energy to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor, piston air motor, air turbine or gear type motor.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

<span class="mw-page-title-main">Armature (electrical)</span> Power-producing component of an electric machine

In electrical engineering, the armature is the winding of an electric machine which carries alternating current. The armature windings conduct AC even on DC machines, due to the commutator action or due to electronic commutation, as in brushless DC motors. The armature can be on either the rotor or the stator, depending on the type of electric machine.

<span class="mw-page-title-main">Tattoo artist</span> Individual who applies permanent decorative tattoos

A tattoo artist is an individual who applies permanent decorative tattoos, often in an established business called a "tattoo shop", "tattoo studio" or "tattoo parlour". Tattoo artists usually learn their craft via an apprenticeship under a trained and experienced mentor.

<span class="mw-page-title-main">Gramme machine</span> Electrical generator that produces direct current

A Gramme machine, Gramme ring, Gramme magneto, or Gramme dynamo is an electrical generator that produces direct current, named for its Belgian inventor, Zénobe Gramme, and was built as either a dynamo or a magneto. It was the first generator to produce power on a commercial scale for industry. Inspired by a machine invented by Antonio Pacinotti in 1860, Gramme was the developer of a new induced rotor in form of a wire-wrapped ring and demonstrated this apparatus to the Academy of Sciences in Paris in 1871. Although popular in 19th century electrical machines, the Gramme winding principle is no longer used since it makes inefficient use of the conductors. The portion of the winding on the interior of the ring cuts no flux and does not contribute to energy conversion in the machine. The winding requires twice the number of turns and twice the number of commutator bars as an equivalent drum-wound armature.

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Electromagnetic brakes or EM brakes are used to slow or stop vehicles using electromagnetic force to apply mechanical resistance (friction). They were originally called electro-mechanical brakes but over the years the name changed to "electromagnetic brakes", referring to their actuation method which is generally unrelated to modern electro-mechanical brakes. Since becoming popular in the mid-20th century, especially in trains and trams, the variety of applications and brake designs has increased dramatically, but the basic operation remains the same.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. While transformers are occasionally called "static electric machines", since they do not have moving parts, generally they are not considered "machines", but as electrical devices "closely related" to the electrical machines.

<span class="mw-page-title-main">Mouse mill motor</span> Simple electric-to-mechanical energy converter

Froment's "mouse mill" motor was an early form of electric motor, also known as the Revolving Armature Engine. It has similarities to both the synchronous motor and the contemporary stepper motor.

<span class="mw-page-title-main">Manfred Kohrs</span> German tattooist and conceptual artist (born 1957)

Manfred Kohrs is a German tattooist and conceptual artist, who has been tattooing since 1974. He was a student of Horst Streckenbach. Together they developed the barbell piercing in 1975. Kohrs invented a rotary tattoo machine with main part an electric motor and an ink reservoir. In 1977 Kohrs founded the first German Tattoo Artist Association. Kohrs has been chairman of the board of the Institute for German Tattoo History (IDTG), which he founded 1997. He gave up tattooing in 1990 and began studying economics. Since completing his economics degree in 1996, he has served as tax consultant and Certified Public Accountant (GER).

<span class="mw-page-title-main">Process of tattooing</span> Overview of the process or technique of tattooing

The process or technique of tattooing, creating a tattoo, involves the insertion of pigment into the skin's dermis. Traditionally, tattooing often involved rubbing pigment into cuts. Modern tattooing almost always requires the use of a tattoo machine and often procedures and accessories to reduce the risk to human health.

<span class="mw-page-title-main">Reciprocating electric motor</span>

A reciprocating electric motor is a motor in which the armature moves back and forth rather than circularly. Early electric motors were sometimes of the reciprocating type, such as those made by Daniel Davis in the 1840s. Today, reciprocating electric motors are rare but they do have some niche applications, e.g. in linear compressors for cryogenics and as educational toys.

In engineering, a solenoid is a device that converts electrical energy to mechanical energy, using an electromagnet formed from a coil of wire. The device creates a magnetic field from electric current, and uses the magnetic field to create linear motion.

References

  1. Jamie Dwelly in History of tattoos, 2015 AETN UK
  2. U.S. patent 196,747
  3. Courtney Linder: Getting Ink: The Entire History of Tattooing popularmechanics.com 7. February 2021.
  4. Tattoo Nation - Tattoo Magazine, Issue # 1, July 10 2014, Page 35/64
  5. Tattoo Nation Nepal's first Tattoo Magazine - July 2014, Issue #1, Page 35.
  6. John Reardon: The Complete Idiot's Guide to Getting a Tattoo. Penguin 2008, ISBN   1-440-63626-5, p. 70.
  7. C. R. Jordan: Basic Fundamentals of Modern Tattoo: Tattoo Apprentice Basics. Tattoo Books Online LLC 2009, ISBN   0-615-28147-8.
  8. Margo DeMello: Inked: Tattoos and Body Art around the World. ABC-CLIO 2014, ISBN   1-610-69076-1, p. 370.
  9. 1 2 Serup, Jørgen; Kluger, Nicolas; Bäumler, Wolfgang (2015). Tattooed skin and health. Current problems in dermatology. Basel Paris: Karger. ISBN   978-3-318-02776-1.
  10. 1 2 De Cuyper, Christa (2018), De Cuyper, Christa; Pérez-Cotapos S, Maria Luisa (eds.), "Procedure of Tattooing", Dermatologic Complications with Body Art: Tattoos, Piercings and Permanent Make-Up, Cham: Springer International Publishing, pp. 49–71, doi:10.1007/978-3-319-77098-7_3, ISBN   978-3-319-77098-7 , retrieved 2024-03-04
  11. Sanders, Clinton R. (2008). Customizing the body: the art and culture of tattooing. D. Angus Vail (Revised and expanded ed.). Philadelphia: Temple University Press. ISBN   978-1-59213-888-3.