LED tattoo

Last updated

A light-emitting diode tattoo is a type of body modification similar to a tattoo, but specifically involves implantation of technologically based materials versus traditional ink injection into the layers of the skin. [1] LED tattoos are accomplished by a combination of silicon-silk technology and a miniature lighting device known as a light-emitting diode. While there is potential for many applications in the medical, commercial and personal domains, the technology is still in the development stage.

Contents

Technological limitations

Current medical devices are limited by their isolation from the body and their placement on rigid silicon. [2] Current devices also contain gold and titanium which are required for electrical connections. Both gold and titanium are bio-compatible which means that they will not be rejected by the body as a foreign substance. However, biocompatibility is not as preferable as biodegradable because the latter does not leave behind any unnecessary materials; so researchers are working on biodegradable contacts to eliminate all remnants but the silicon. The current form of the LED tattoo has been implanted on mice without harm. [3] Research on silicon-silk technology has been conducted at the University of Pennsylvania's Engineering Department. The Royal Philips Electronics of the Netherlands showed commercial interest in the research of silicon silk technology, specifically LED tattoos as a means to extend the digital experience, or interactivity with the digital product. [4]

Development

Future LED tattoos may use silicon chips that are around the length of a small grain of rice which has the dimensions of about 1 millimeters and just 250 nanometers thick. [5] The chips are placed on thin films of silk, which cause the electronics to conform to biological tissue. This process is aided when saline solution is added, helping the silicon mold to the shape of the skin. Silk dissolves away over time, which can occur immediately after the operation or over the course of several years, [6] leaving the thin silicon circuits in place. While silicon has not been proven to be biocompatible all studies show it to be safe [7] and it has been used in many other medical implant operations including implantation of silicon chips in mice.

One potential medical application would be silk-silicon LEDs to create photonic tattoos which would assist in blood-sugar readings. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. It produces an electrical current when it absorbs photons. This can be used for detection and measurement applications, or for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from visible light photocells to gamma ray spectrometers.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

<span class="mw-page-title-main">Gallium nitride</span> Chemical compound

Gallium nitride is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic, high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency-doubling.

In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

<span class="mw-page-title-main">Biocompatibility</span> Biologically compatible substance

Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing development of insights into how biomaterials interact with the human body and eventually how those interactions determine the clinical success of a medical device. Modern medical devices and prostheses are often made of more than one material so it might not always be sufficient to talk about the biocompatibility of a specific material. Even the same materials, such as diamond-like carbon coatings, may show different levels of biocompatibility based on the manufacturing conditions and characteristics.

<span class="mw-page-title-main">Implant (medicine)</span> Device surgically placed within the body for medical purposes

An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. For example, an implant may be a rod, used to strengthen weak bones. Medical implants are human-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone, or apatite depending on what is the most functional. In 2018, for example, American Elements developed a nickel alloy powder for 3D printing robust, long-lasting, and biocompatible medical implants. In some cases implants contain electronics, e.g. artificial pacemaker and cochlear implants. Some implants are bioactive, such as subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.

<span class="mw-page-title-main">Organ printing</span> Method of creating artificial organs

Organ printing utilizes techniques similar to conventional 3D printing where a computer model is fed into a printer that lays down successive layers of plastics or wax until a 3D object is produced. In the case of organ printing, the material being used by the printer is a biocompatible plastic. The biocompatible plastic forms a scaffold that acts as the skeleton for the organ that is being printed. As the plastic is being laid down, it is also seeded with human cells from the patient's organ that is being printed for. After printing, the organ is transferred to an incubation chamber to give the cells time to grow. After a sufficient amount of time, the organ is implanted into the patient.

<span class="mw-page-title-main">Biomaterial</span> Any substance that has been engineered to interact with biological systems for a medical purpose

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic or a diagnostic one. The corresponding field of study, called biomaterials science or biomaterials engineering, is about fifty years old. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science.

A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components that form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits utilize photons as opposed to electrons that are utilized by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near infrared (850–1650 nm).

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Die (integrated circuit)</span> Unpackaged integrated circuit

A die, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. Typically, integrated circuits are produced in large batches on a single wafer of electronic-grade silicon (EGS) or other semiconductor through processes such as photolithography. The wafer is cut (diced) into many pieces, each containing one copy of the circuit. Each of these pieces is called a die.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

<span class="mw-page-title-main">Oleg Losev</span> Russian scientist and inventor

Oleg Vladimirovich Losev was a Russian scientist and inventor who made significant discoveries in the field of semiconductor junctions and the light emitting diode (LED).

A human microchip implant is any electronic device implanted subcutaneously (subdermally) usually via an injection. Examples include an identifying integrated circuit RFID device encased in silicate glass which is implanted in the body of a human being. This type of subdermal implant usually contains a unique ID number that can be linked to information contained in an external database, such as identity document, criminal record, medical history, medications, address book, and other potential uses.

Biodegradable electronics are electronic circuits and devices with a limited lifetime owing to their tendency to biodegrade. Such devices are proposed to represent useful medical implant, and temporary communication sensors.

The Microsystems Technology Office (MTO) is one of seven current organizational divisions of DARPA, an agency responsible for the development of new technology for the United States Armed Forces. It is sometimes referred to as the Microelectronics Technology Office.

The IEEE International Electron Devices Meeting (IEDM) is an annual micro- and nanoelectronics conference held each December that serves as a forum for reporting technological breakthroughs in the areas of semiconductor and related device technologies, design, manufacturing, physics, modeling and circuit-device interaction.

<span class="mw-page-title-main">James R. Biard</span> American electrical engineer and inventor (1931–2022)

James Robert Biard was an American electrical engineer and inventor who held 73 U.S. patents. Some of his more significant patents include the first infrared light-emitting diode (LED), the optical isolator, Schottky clamped logic circuits, silicon Metal Oxide Semiconductor Read Only Memory, a low bulk leakage current avalanche photodetector, and fiber-optic data links. In 1980, Biard became a member of the staff of Texas A&M University as an Adjunct Professor of Electrical Engineering. In 1991, he was elected as a member into the National Academy of Engineering for contributions to semiconductor light-emitting diodes and lasers, Schotky-clamped logic, and read-only memories.

References

  1. Murad, Ahmed (2009-12-19). "Microtrends: LED tattoos". The Times. London. p. 9. ProQuest   320328597.
  2. Quick, Darren (2009-11-12). "Implantable Silicon-Silk electronics could mean LED tattoos". New Atlas. Retrieved 2023-12-01.
  3. Zuras, Matthew (2009-11-21). "Philip's Interactive LED Tattoos Could Be the Future of Body Art". Switched. Archived from the original on 2012-03-11.
  4. Orca, Surfdaddy (2009-11-17). "Tattoo You: Silicon LEDs can act as photonic tattoos that can show blood-sugar readings". h+ Magazine. Archived from the original on 2010-02-13.
  5. Sorrel, Charlie (2009-11-20). "The Illustrated Man: How LED Tattoos Could Make Your Skin a Screen". Wired. ISSN   1059-1028 . Retrieved 2023-12-01.
  6. Omenetto, Fiorenzo (March 2011). "Silk, the ancient material of the future". TED. Retrieved 2023-12-01.
  7. Bourzac, Katherine (2009-11-03). "Implantable Silicon-Silk Electronics". MIT Technology Review. Retrieved 2023-12-01.
  8. Estes, Adam Clark (2014-01-06). "The Freaky, Bioelectric Future of Tattoos". Gizmodo. Retrieved 2023-12-01.