This article needs more reliable medical references for verification or relies too heavily on primary sources , specifically: Several sections have medical claims that need more thorough sourcing.(November 2023) |
External audio | |
---|---|
“Rethinking Ink”, Distillations Podcast Episode 220, Science History Institute |
Tattoo removal is the process of removing an unwanted tattoo. The process of tattooing generally creates permanent markings in the skin, but people have attempted many methods to try to hide or destroy tattoos.
The standard modern method is the non-invasive removal of tattoo pigment using Q-switched lasers. [1] Different types of Q-switched lasers are used to target different colors of tattoo ink; depending on the specific light absorption spectra of the tattoo pigments. Typically, black and other darker-colored inks can be removed completely using Q-switched lasers, while lighter colors, such as yellows and greens, are very difficult to remove. Success depends on a wide variety of factors including skin color, ink color, and the depth at which the ink was applied. [2] [1]
Recent research has investigated the potential of multi-pass treatments and the use of picosecond laser technology. [3] [4] [5]
Before tattoo removal with Q-switched lasers began in the early 1990s, continuous-wave lasers were the standard method for tattoo removal. Continuous-wave lasers used a high energy beam that ablated the target area and destroyed surrounding tissue structures as well as tattoo ink. Treatment tended to be painful and cause significant scarring. [2] [1]
Prior to the development of laser tattoo removal methods, common techniques included dermabrasion, TCA (Trichloroacetic acid, an acid that removes the top layers of skin, reaching as deep as the layer in which the tattoo ink resides), Sal abrasion (scrubbing the skin with salt), cryosurgery, and excision, which is sometimes still used along with skin grafts for larger tattoos. [6] [1] [7] Many other methods for removing tattoos have been suggested historically, including the injection or application of tannic acid, lemon juice, garlic, and pigeon dung. [8] [9]
Saline is used to lighten tattoos (including microblading tattoos) through the process of osmosis. [10] [11] [12] [13]
A poll conducted in January 2012 by Harris Interactive reported that 1 in 7 (14%) of the 21% of American adults who have a tattoo regret getting one. The poll did not report the reasons for these regrets, but a poll that was conducted four years prior reported that the most common reasons were "too young when I got the tattoo" (20%), "it's permanent," "I'm marked for life" (19%), and "I just don't like it" (18%). An earlier poll showed that 19% of Britons with tattoos experienced regret, as did 11% of Italians with tattoos. [14]
Surveys of tattoo removal patients conducted in 1996 and 2006 provided more insight. Of those polled, the patients who regretted their tattoos typically obtained their tattoos in their late teens or early twenties and were evenly distributed by gender. Among those seeking removals, more than half reported that they "suffered embarrassment." [15] A new job, problems with clothes, and a significant life event were also commonly cited as motivations. [15] Tattoos that were once a symbol of inclusion in a group, such as a gang, can make it difficult to gain employment. [2] Tattoos that indicate a significant relationship, such as a spouse, girlfriend, or boyfriend, can become problematic if the relationship ends. [16] Celebrities that have had these kinds of tattoos removed include Angelina Jolie, Eva Longoria, Marc Anthony, and Denise Richards. [17]
Some people decide to cover an unwanted tattoo with a new tattoo. A skillful cover-up may completely hide the old tattoo, or it may partially hide the old tattoo, depending on the size, style, colors and techniques used on the old tattoo and the skill of the tattoo artist. [18] Covering up a previous tattoo requires darker tones in the new tattoo to effectively hide the unwanted piece. [19] For tattoos that are especially difficult to cover up, a person may choose to get laser tattoo removal to lighten the ink to make the area easier to cover with a new tattoo. [20]
Tattoo removal is most commonly performed using lasers that break down the ink particles in the tattoo into smaller particles. Dermal macrophages are part of the immune system, tasked with collecting and digesting cellular debris. In the case of tattoo pigments, macrophages collect ink pigments, but have difficulty breaking them down. Instead, they store the ink pigments. If a macrophage is damaged, it releases its captive ink, which is taken up by other macrophages. This can make it particularly difficult to remove tattoos. When treatments break down ink particles into smaller pieces, macrophages can more easily remove them. [21]
Tattoo pigments have specific light absorption spectra. A tattoo laser must be capable of emitting adequate energy within the given absorption spectrum of the pigment to provide an effective treatment. Certain tattoo pigments, such as yellows and fluorescent inks are more challenging to treat than darker blacks and blues, because they have absorption spectra that fall outside or on the edge of the emission spectra of the tattoo removal laser. [6] Recent pastel-cultured inks contain high concentrations of titanium dioxide, which is highly reflective. Such inks are difficult to remove because they reflect a significant amount of the incident light energy out of the skin. [22] [6]
The gold standard of tattoo removal treatment modality is considered to be laser tattoo removal using multiple separate Q-switched lasers (depending on the specific wavelengths needed for the dyes involved) over a number of repeat visits. There are several types of Q-switched lasers, and each is effective at removing a different range of the color spectrum. [5] [1] Lasers developed during or after 2006 provide multiple wavelengths and can successfully treat a much broader range of tattoo pigments than previous individual Q-switched lasers. Unfortunately the dye systems used to change the wavelength result in significant power reduction such that the use of multiple separate specific wavelength lasers remains the gold standard.[ citation needed ]
The energy density (fluence), expressed as joules/cm2, is determined prior to each treatment as well as the spot size and repetition rate (hertz). To mitigate pain the preferred method is simply to cool the area before and during treatment with a medical-grade chiller/cooler and to use a topical anesthetic. During the treatment process, the laser beam passes through the skin, targeting the ink resting in a liquid state within. While it is possible to see immediate results, in most cases the fading occurs gradually over the 7–8 week healing period between treatments. [23]
Q-switched lasers are reported by the National Institutes of Health to result in scarring only rarely. Areas with thin skin will be more likely to scar than thicker-skinned areas. [24]
By 2023, the laser tattoo removal market is expected to grow 12.7% annually. [25]
Experimental observations of the effects of short-pulsed lasers on tattoos were first reported in the late 1960s by Leon Goldman and others. [26] [27] [28] In 1979 an argon laser was used for tattoo removal in 28 patients, with limited success. In 1978 a carbon dioxide laser was also used, but because it targeted water, a chromophore present in all cells, this type of laser generally caused scarring after treatments. [29] [6] [30] [2]
In the early 1980s, a new clinical study began in Canniesburn Hospital's Burns and Plastic Surgery Unit, in Glasgow, Scotland, into the effects of Q-switched ruby laser energy on blue/black tattoos. [26] [31] Further studies into other tattoo colors were then carried out with various degrees of success. [32] Research at the University of Strathclyde, Glasgow also showed that there was no detectable mutagenicity in tissues following irradiation with the Q-switched ruby laser. [33] This essentially shows that the treatment is safe, from a biological viewpoint, with no detectable increase in the risk of the development of cancerous cells. [34]
It was not until the late 1980s that Q-switched lasers became commercially practical with the first marketed laser coming from Derma-lase Limited, Glasgow. [35] [36] One of the first American published articles describing laser tattoo removal was authored by a group at Massachusetts General Hospital in 1990. [26] [37]
Tattoos consist of thousands of particles of tattoo pigment suspended in the skin. [38] While normal human growth and healing processes will remove small foreign particles from the skin, tattoo pigment particles are too big to be removed automatically. Laser treatment causes tattoo pigment particles to heat up and fragment into smaller pieces. These smaller pieces are then removed by normal body processes. Q-switched lasers produce bursts of infrared light at specific frequencies that target a particular spectrum of color in the tattoo ink. The laser passes through the upper layers of the skin to target a specific pigment in the lower layers. [2]
Laser tattoo removal is a successful application of the theory of selective photothermolysis (SPTL). [39] However, unlike treatments for blood vessels or hair, the mechanism required to shatter tattoo particles uses the photomechanical effect. In this situation the energy is absorbed by the ink particles in a very short time, typically nanoseconds. The surface temperature of the ink particles can rise to thousands of degrees but this energy profile rapidly collapses into a shock wave. This shock wave then propagates throughout the local tissue (the dermis) causing brittle structures to fragment. Hence tissues are largely unaffected since they simply vibrate as the shock wave passes. For laser tattoo removal the selective destruction of tattoo pigments depends on four factors:
Q-switched lasers are the only commercially available devices that can meet these requirements. [40]
Although they occur infrequently, mucosal tattoos can be successfully treated with Q-switched lasers as well. [41]
A novel method for laser tattoo removal using a fractionated CO2 or Er:YAG laser, alone or in combination with Q-switched lasers, was reported by Ibrahimic and coworkers from the Wellman Center of Photomedicine at the Massachusetts General Hospital in 2011. [42] This new approach to laser tattoo removal may afford the ability to remove colors such as yellow and white, which have proven to be resistant to traditional Q-switched laser therapy.
Several colors of laser light (quantified by the laser wavelength) are used for tattoo removal, from visible light to near-infrared radiation. Different lasers are better for different tattoo colors. Consequently, multi-color tattoo removal almost always requires the use of two or more laser wavelengths. Tattoo removal lasers are usually identified by the lasing medium used to create the wavelength (measured in nanometers (nm)):
Pulse width or pulse duration is a critical laser parameter. All Q-switched lasers have appropriate pulse durations for tattoo removal. [47]
Spot size, or the width of the laser beam, affects treatment. Light is optically scattered in the skin, like automobile headlights in fog. Larger spot sizes slightly increase the effective penetration depth of the laser light, thus enabling more effective targeting of deeper tattoo pigments. Larger spot sizes also help make treatments faster.[ citation needed ]
Fluence or energy density is another important consideration. Fluence is measured in joules per square centimeter (J/cm2). It is important to be treated at high enough settings to fragment tattoo particles.
Repetition rate helps make treatments faster but is not associated with any treatment effect. Faster treatments are usually preferred because the pain ends sooner.
The number of treatments necessary to remove a tattoo via laser can be predicted by the Kirby-Desai Scale. [48] The number of sessions depends on various parameters, including the area of the body treated, skin color, ink color present, scarring, and amount of ink present. Effectiveness of the immune system may play a role as well.
Complete laser tattoo removal requires numerous treatment sessions, typically spaced at eight weeks or more apart. Treating more frequently than eight weeks increases the risk of adverse effects and does not necessarily increase the rate of ink absorption. Anecdotal reports of treatments sessions at four weeks leads to more scarring and dyschromia and can be a source of liability for clinicians. At each session, some but not all of the tattoo pigment particles are effectively fragmented, and the body removes the smallest fragments over the course of several weeks or months. The result is that the tattoo is lightened over time. Remaining large particles of tattoo pigment are then targeted at subsequent treatment sessions, causing further lightening. Tattoos located on the extremities, such as the ankle, generally take longest. As tattoos fade clinicians may recommend that patients wait many months between treatments to facilitate ink resolution and minimize unwanted side effects.
Certain colors have proved more difficult to remove than others. In particular, this occurs when treated with the wrong wavelength of laser light is used. Some have postulated that the reason for slow resolution of green ink in particular is due to its significantly smaller molecular size relative to the other colors. [49] Consequently, green ink tattoos may require treatment with 755 nm light but may also respond to 694 nm, 650 nm and 1064 nm. Multiple wavelengths of light may be needed to remove colored inks.
One small Greek study showed that the R20 method—four passes with the laser, twenty minutes apart—caused more breaking up of the ink than the conventional method without more scarring or adverse effects. However, this study was performed on a very small patient population (12 patients total), using the weakest of the QS lasers, the 755 nm Alexandrite laser. One of the other main problems with this study was the fact that more than half of the 18 tattoos removed were not professional and amateur tattoos are always easier to remove. Proof of concept studies are underway, but many laser experts advise against the R20 method using the more modern and powerful tattoo removal lasers available at most offices as an increase in adverse side effects including scarring and dyschromia is likely. Patients should inquire about the laser being used if the R20 treatment method is offered by a facility as it is usually only offered by clinics that are using the 755 nm Alexandrite as opposed to the more powerful and versatile devices that are more commonly used. Moreover, dermatologists offering the R20 method should inform patients that it is just one alternative to proven protocols and is not a gold standard treatment method to remove tattoos.
Multiple pass treatment methods (R20, as mentioned above, and R0) have generally shown to carry a greater risk of side effects, due to the increased amount of energy used in treatment. One caveat to this, however, is incorporating a perfluorodecalin (PFD) patch into the protocol. [50] A PFD patch utilizes a clear silicone gel patch, with a small amount of PFD liquid applied to the treatment area immediately before each pass of laser application, and conducting the passes in rapid succession. The combination of the patch and liquid reduce the epidermal scatter, which can limit the predicted side effects typically seen in aggressive laser tattoo removal treatments (hyper and hypopigmentation, blistering, etc.). [51] Additionally, the liquid reduces the laser frosting very quickly, allowing for faster re-treatment, limiting the time of treatment while still improving efficacy. Early studies have been performed to indicate improved clearance with the use of this patch in 3-4 passes, in a single session, utilizing more energy than typically allowable with a traditional treatment methodology. [52] All these physical properties of the patch work to substantially reduce the total number of laser treatments required for ink clearance. While the PFD patch is currently FDA cleared for use with all picot and nanosecond domain lasers and wavelengths, it is only cleared for Fitzpatrick Skin Types I-III. Early studies have shown anecdotally that there isn't necessarily increased risks with Fitzpatrick Skin Types IV-VI, though still not FDA cleared as an indication. [53]
There are a number of factors that determine how many treatments will be needed and the level of success one might experience. Age of tattoo, ink density, color and even where the tattoo is located on the body, and whether the tattoo was professional, or not, all play an important role in how many treatments will be needed for complete removal. [54] However, a rarely recognized factor of tattoo removal is the role of the patient's immune response. [55] The normal process of tattoo removal is fragmentation followed by phagocytosis, which is then drained away via the lymphatics. Consequently, it is the inflammation resulting from the actual laser treatment and the natural stimulation of the hosts' immune response that ultimately results in removal of tattoo ink. Because of this, the effectiveness of laser tattoo removal varies widely. [56]
Laser tattoo removal is painful; many patients say it is worse than getting the tattoo. The pain is often described to be similar to that of hot oil on the skin, or a "snap" from an elastic band. Depending on the patient's pain threshold, some patients may forgo anesthesia altogether, but most patients will require some form of local anesthesia. Pre-treatment might include the application of an anesthetic cream under occlusion for 45 to 90 minutes or cooling by ice or cold air prior to the laser treatment session. A better method is complete anesthesia which can be administered locally by injections of 1% to 2% lidocaine with epinephrine.
A technique which helps to reduce the pain sensation felt by patients has been described by MJ Murphy. [57] He used a standard microscope glass slide pressed against the tattooed skin and fired the laser through the glass. This technique may represent a simplest and effective method to reduce the pain sensation when treating small tattoos.
Immediately after laser treatment, a slightly elevated, white discoloration with or without the presence of punctuate bleeding is often observed. This white color change is thought to be the result of rapid, heat-formed steam or gas, causing dermal and epidermal vacuolization. Pinpoint bleeding represents vascular injury from photoacoustic waves created by the laser's interaction with tattoo pigment. Minimal edema and erythema of adjacent normal skin usually resolve within 24 hours. Subsequently, a crust appears over the entire tattoo, which sloughs off at approximately two weeks post-treatment. As noted above, some tattoo pigment may be found within this crust. Post-operative wound care consists of simple wound care and a non-occlusive dressing. Since the application of laser light is sterile there is no need for topical antibiotics. Moreover, topical antibiotic ointments can cause allergic reactions and should be avoided. Fading of the tattoo will be noted over the next eight weeks and re-treatment energy levels can be tailored depending on the clinical response observed. [58]
About half of the patients treated with Q-switched lasers for tattoo removal will show some transient changes in the normal skin pigmentation. These changes usually resolve in 6 to 12 months but may rarely be permanent. [59]
Hyperpigmentation is related to the patient's skin tone, with skin types IV, V and VI more prone regardless of the wavelength used. Twice daily treatment with hydroquinones and broad-spectrum sunscreens usually resolves the hyperpigmentation within a few months, although, in some patients, resolution can be prolonged. [59]
Hypopigmentation is more commonly observed in darker skin tones. It is more likely to occur with higher fluence and more frequent treatments. Sometimes lighter skin exhibits hypopigmentation after a series of treatments. Allowing more time between treatments reduces chances of hypopigmentation. Since it is more likely to see hypopigmentation after multiple treatments, some practitioners suggest waiting a few additional weeks, after a few sessions. Usually treatment stops until hypopigmentation resolves in a matter of months.
Transient textural changes are occasionally noted but often resolve within a few months; however, permanent textural changes and scarring very rarely occur. If a patient is prone to pigmentary or textural changes, longer treatment intervals are recommended. Additionally, if a blister or crust forms following treatment, it is imperative that the patient does not manipulate this secondary skin change. Early removal of a blister or crust increases the chances of developing a scar. Additionally, patients with a history of hypertrophic or keloidal scarring need to be warned of their increased risk of scarring.
Local allergic responses to many tattoo pigments have been reported, and allergic reactions to tattoo pigment after Q-switched laser treatment are also possible. Rarely, when yellow cadmium sulfide is used to "brighten" the red or yellow portion of a tattoo, a photoallergic reaction may occur. The reaction is also common with red ink, which may contain cinnabar (mercuric sulfide). Erythema, pruritus, and even inflamed nodules, verrucose papules, or granulomas may develop. The reaction will be confined to the site of the red/yellow ink. Treatment consists of strict sunlight avoidance, sunscreen, interlesional steroid injections, or in some cases, surgical removal. Unlike the destructive modalities described, Q-switched lasers mobilize the ink and may generate a systemic allergic response. Oral antihistamines and anti-inflammatory steroids have been used to treat allergic reactions to tattoo ink.
Studies of various tattoo pigments have shown that a number of pigments (most containing iron oxide or titanium dioxide) change color when irradiated with Q-switched laser energy. Some tattoo colors including flesh tones, light red, white, peach and light brown containing pigments as well as some green and blue tattoo pigments, changed to black when irradiated with Q-switched laser pulses. The resulting gray-black color may require more treatments to remove. If tattoo darkening does occur, after 8 weeks the newly darkened tattoo can be treated as if it were black pigment. [60]
Very rarely, non Q-switched laser treatments, like CO2 or Argon lasers, which are very rarely offered these days, can rupture blood vessels and aerosolize tissue requiring a plastic shield or a cone device to protect the laser operator from tissue and blood contact. Protective eyewear may be worn if the laser operator chooses to do so.
With the mechanical or salabrasion method of tattoo removal, the incidence of scarring, pigmentary alteration (hyper- and hypopigmentation), and ink retention are extremely high. [61]
The use of Q-switched lasers could very rarely produce the development of large bulla. However, if patients follow post care directions to elevate, rest, and apply intermittent icing, it should minimize the chances of bulla and other adverse effects. In addition, health care practitioners should contemplate the use of a cooling device during the tattoo removal procedure. While the infrequent bulla development is a possible side effect of Q-switched laser tattoo removal, if treated appropriately and quickly by the health care practitioner, it is unlikely that long term consequences would ensue. [62]
Although laser treatment is well known and often used to remove tattoos, unwanted side effects of laser tattoo removal include the possibility of discoloration of the skin such as hypopigmentation (white spots, more common in darker skin) and hyperpigmentation (dark spots) as well as textural changes. These changes are usually not permanent when the Nd:YAG is used but it is much more likely with the use of the 755 nm Alexandrite, the 694 nm Ruby and the R20 method. Very rarely, burns may result in scarring, but this usually only occurs when patients do not properly care for the treated area. Occasionally, "paradoxical darkening" of a tattoo may occur when a treated tattoo becomes darker instead of lighter. This may occur with white ink, flesh tones, pink, and cosmetic makeup tattoos. [63] [64]
Some commercially available tattoo inks may contain organic pigments, also known as azo dyes. [65] When these pigments are broken down via laser pyrolysis, the potential release of aromatic amine rings, a known carcinogen, [66] into the body, could occur. [67] This effect is theorized not to be isolated only to laser tattoo removal, but may also occur with solar radiation. [68]
Laser removal of traumatic tattoos may be dangerous depending on the substance of the material embedded in the skin. In one reported instance, the use of a laser resulted in the ignition of embedded particles of firework debris. [69]
A melanocytic nevus is usually a noncancerous condition of pigment-producing skin cells. It is a type of melanocytic tumor that contains nevus cells. A mole can be either subdermal or a pigmented growth on the skin, formed mostly of a type of cell known as a melanocyte. The high concentration of the body's pigmenting agent, melanin, is responsible for their dark color. Moles are a member of the family of skin lesions known as nevi, occurring commonly in humans. Some sources equate the term "mole" with "melanocytic nevus", but there are also sources that equate the term "mole" with any nevus form.
Intense pulsed light (IPL) is a technology used by cosmetic and medical practitioners to perform various skin treatments for aesthetic and therapeutic purposes, including hair removal, photorejuvenation as well as to alleviate dermatologic diseases such as acne. IPL is increasingly used in optometry and ophthalmology as well, to treat evaporative dry eye disease due to meibomian gland dysfunction.
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant, neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are of similar size. It is the neodymium ion which provides the lasing activity in the crystal, in the same fashion as red chromium ion in ruby lasers.
Laser hair removal is the process of hair removal by means of exposure to pulses of laser light that destroy the hair follicle. It had been performed experimentally for about twenty years before becoming commercially available in 1995–1996. One of the first published articles describing laser hair removal was authored by the group at Massachusetts General Hospital in 1998. Laser hair removal is widely practiced in clinics, and even in homes using devices designed and priced for consumer self-treatment. Many reviews of laser hair removal methods, safety, and efficacy have been published in the dermatology literature.
A medical tattoo is a tattoo used to treat a condition, communicate medical information, or mark a body location for treatment. People may get a paramedical tattoo to conceal a condition or the effects of treatment, such as creating the appearance of an areola after breast reconstruction, or a cover-up tattoo to disguise the area in an artistic way.
Hypopigmentation is characterized specifically as an area of skin becoming lighter than the baseline skin color, but not completely devoid of pigment. This is not to be confused with depigmentation, which is characterized as the absence of all pigment. It is caused by melanocyte or melanin depletion, or a decrease in the amino acid tyrosine, which is used by melanocytes to make melanin. Some common genetic causes include mutations in the tyrosinase gene or OCA2 gene. As melanin pigments tend to be in the skin, eye, and hair, these are the commonly affected areas in those with hypopigmentation.
Dermabrasion is a type of surgical skin planing, generally with the goal of removing acne, scarring and other skin or tissue irregularities, typically performed in a professional medical setting by a dermatologist or plastic surgeon trained specifically in this procedure. Dermabrasion has been practiced for many years and involves the controlled deeper abrasion of the upper to mid layers of the skin with any variety of strong abrasive devices including a wire brush, diamond wheel or fraise, sterilized sandpaper, salt crystals or other mechanical means.
William Terence Kirby, popularly known as Dr. Will, is an American aesthetic dermatologist, an associate clinical professor of dermatology, and a reality television personality. He is known for winning the CBS reality show Big Brother 2 as well as winning The Price Is Right and appearing on Star Wars television series The Book of Boba Fett.
Permanent makeup, also known as permanent cosmetics, derma-pigmentation, micro-pigmentation, semi-permanent makeup and cosmetic tattooing, is a cosmetic technique which employs tattooing techniques to replicate the appearance of traditional makeup. By implanting pigments into the dermis, long-lasting designs are created such as eye liner, eyebrows, and lip color. This procedure appeals to a diverse range of people; from those who want to make their daily routines more simple to individuals with medical conditions. By eliminating the need to apply traditional makeup regularly, permanent makeup has become a very convenient and effective solution. More than an aesthetic technique, permanent makeup plays a crucial role in procedures of reconstructive type.
UV tattoos or blacklight tattoos are tattoos made with dyes that fluoresce visibly under a blacklight or other ultraviolet (UV) light source. Depending upon the tattoo ink used, an ultraviolet tattoo can be nearly invisible when illuminated only by light within the visible spectrum. Blacklight tattoo ink does not glow in the dark, but reacts to non-visible ultraviolet light, producing a visible glow by fluorescence.
Laser surgery is a type of surgery that cuts tissue using a laser in contrast to using a scalpel.
Tattoo inks consist of pigments combined with a carrier, used in the process of tattooing to create a tattoo in the skin. These inks are also used for permanent makeup, a form of tattoo.
Cover-up tattoos are those done over one or more previous tattoos, scars, or skin conditions.
Photorejuvenation is a skin treatment that uses lasers, intense pulsed light, or photodynamic therapy to treat skin conditions and remove effects of photoaging such as wrinkles, spots, and textures. The process induces controlled wounds to the skin. This prompts the skin to heal itself, by creating new cells. This process—to a certain extent—removes the signs of photoaging. The technique was invented by Thomas L Roberts, III using CO2 lasers in the 1990s. Observed complications have included scarring, hyperpigmentation, acne, and herpes.
Postinflammatory hypopigmentation is a cutaneous condition characterized by decreased pigment in the skin following inflammation of the skin.
Laser medicine is the use of lasers in medical diagnosis, treatments, or therapies, such as laser photodynamic therapy, photorejuvenation, and laser surgery.
A variety of health effects can result from tattooing. Because it requires breaking the skin barrier, tattooing carries inherent health risks, including infection and allergic reactions. Modern tattooists reduce such risks by following universal precautions, working with single-use disposable needles, and sterilising equipment after each use. Many jurisdictions require tattooists to undergo periodic bloodborne pathogen training, such as is provided through the Red Cross and the U.S. Occupational Safety and Health Administration.
Prepubertal hypertrichosis, also known as childhood hypertrichosis, is a cutaneous condition characterized by increased hair growth, found in otherwise healthy infants and children. Prepubertal hypertrichosis is a cosmetic condition and does not affect any other health aspect. Individuals with this condition may suffer with low self esteem and mental health issues due to societal perceptions of what a "normal" appearance should be. The mechanism of prepubertal hypertrichosis is unclear, but causes may include genetics, systemic illnesses, or medications.
The process or technique of tattooing, creating a tattoo, involves the insertion of pigment into the skin's dermis. Traditionally, tattooing often involved rubbing pigment into cuts. Modern tattooing almost always requires the use of a tattoo machine and often procedures and accessories to reduce the risk to human health.
Tina S. Alster, MD, FAAD, is an American dermatologist, educator, researcher, and author. Alster specializes in dermatologic laser surgery and cosmetic dermatology. She is the founding director of her skin care clinic, the Washington Institute of Dermatologic Laser Surgery, and is a Clinical Professor of Dermatology at Georgetown University Medical Center in Washington, D.C.
{{cite book}}
: |journal=
ignored (help)Katy has revealed she has spent more than £1,200 over the course of two years to rectify them, undergoing saline removal sessions two months after the initial procedure, which involves using a tattoo gun with salt and water to lift the ink.