TerraPower

Last updated

TerraPower, LLC
Company typePrivate
Industry Nuclear power
Founded2006
Founder Bill Gates
Headquarters,
United States
Key people
Bill Gates
(Chairman)
Chris Levesque
(President & CEO)
ProductsNatrium Sodium-Cooled Fast Reactor, Molten Chloride Fast Reactor, Traveling wave reactor
Website terrapower.com

TerraPower is an American nuclear reactor design and development engineering company headquartered in Bellevue, Washington. TerraPower is developing a class of nuclear fast reactors termed traveling wave reactors (TWR). [1]

Contents

TWR places a small core of enriched fuel in the center of a much larger mass of non-fissile material, in this case depleted uranium. Neutrons from fission in the core "breeds" new fissile material in the surrounding mass, producing Plutonium-239. Over time, enough fuel is bred in the area surrounding the core that it can undergo fission, enabling a steady-state reactor composition to be approximated by moving outer fuel rods towards the core as original core fuel rods are moved to the periphery. [2]

In September 2015, TerraPower signed an agreement with state-owned China National Nuclear Corporation to build a prototype 600 MWe reactor unit at Xiapu in Fujian province, China, from 2018 to 2025. [3] Commercial power plants, generating about 1150 MWe, were planned for the late 2020s. [4] However, in January 2019 it was announced that the project had been abandoned due to technology transfer limitations placed by the Trump administration. [5]

In October 2020, the company was chosen by the United States Department of Energy as a recipient of a matching grant totaling between $400 million and $4 billion over the ensuing 5 to 7 years to build a demonstration reactor using their "Natrium" design. Natrium uses liquid sodium as a coolant (reducing the cost using an ambient pressure primary loop). It then transfers that heat to molten salt, which can be stored in tanks and used to generate steam on demand, enabling the reactor to run continuously at constant power, while allowing dispatchable electricity generation. [6]

History

TerraPower is partly funded by the US Department of Energy (DOE) and Los Alamos National Laboratory. [7] One of TerraPower's primary investors is Bill Gates (via Cascade Investment). Others include Charles River Ventures and Khosla Ventures, which reportedly invested $35 million in 2010. TerraPower is led by chief executive officer Chris Levesque. In December 2011 India's Reliance Industries bought a minority stake through one of its subsidiaries and its Chairman Mukesh Ambani joined the board. Other TerraPower participants include [8] scientists and engineers from Lawrence Livermore National Laboratory, the Fast Flux Test Facility, Microsoft, and various universities, as well as managers from Siemens, Areva NP, the ITER project, Ango Systems Corporation, and DOE.

SK Group agreed to invest $250 million in 2022. The round was co-led by SK Inc and SK Innovation and Gates. DOE gave TerraPower cost-share funding through the Advanced Reactor Demonstration Program (ARDP) to test, license and build an advanced reactor within seven years.

TerraPower selected Kemmerer, Wyoming as the site for a 345 MWe Natrium reactor using a molten salt energy storage system. The reactor can temporarily boost output to 500 MWe, enabling the plant to integrate with renewable resources. [9] In June 2024 the site broke ground, beginning preparation for the as-yet unapproved reactor. [10] It is estimated to cost $4 billion, with the DOE supplying half of that cost, and Gates contributing $1 billion of his money. [11]

Mission

Company objectives include: [12]

Designs

Traveling wave reactor

TerraPower chose traveling wave reactors (TWRs) as its primary technology. Their major benefit is high fuel utilization that does not require nuclear reprocessing and could eliminate the need to enrich uranium. [13] TWRs are designed to convert typically non-fissile fertile nuclides (U-238) into fissile nuclides (Pu-239) in-situ and then shift power production from the "burned" region to the "bred" region. This allows the benefits of a closed fuel cycle without the expense and proliferation-risk of enrichment/reprocessing plants. Enough fuel for between 40 and 60 years of operation could be included in the reactor during manufacturing. The reactor could be installed below ground, where it could operate for an estimated 100 years. [14] TerraPower described its reactor design as a Generation IV design. [15]

Environmental effects

By using depleted uranium as fuel, the new reactor type could reduce depleted uranium stockpiles. [16] TerraPower notes that the US harbors 700,000 metric tons of depleted uranium and that 320 metric tons could power 100 million homes for a year. [17] Reports claim that TWR's high fuel efficiency, combined with the ability to use uranium recovered from river or sea water, means enough fuel is available to generate electricity for 10 billion people at US per capita consumption levels over million-year time-scales. [2]

Research and development

The TWR design is still in research and development. The conceptual framework was simulated by supercomputers with empirical evidence for theoretical feasibility. On November 6, 2009, TerraPower executives and Bill Gates visited Toshiba's Yokohama and Keihin Factories in Japan, and concluded a non-disclosure agreement with them on December 1. [18] [19] [20] Toshiba had developed an ultracompact reactor, the 4S, that could operate for 30 years without fuel handling and generated 10 megawatts. [20] [21] [22] Some of the 4S technologies are considered to be transferable to TWRs. [19]

Molten salt reactor

In October 2015 the company was reported to be investigating a molten salt reactor design with Southern Company as a technology alternative. [23] [24] In February 2022, it was announced that the two companies had agreed to build a demonstration fast-spectrum salt reactor at Idaho National Laboratory (INL). [25] In 2023, the US Department of Energy announced a project to build a test reactor using high-enriched fuel (HEU) containing as much as 90% 235
U
, contradicting the country's longer-term project to remove HEU from all reactors. [26]

Sodium fast reactor (Natrium)

Natrium combines a molten sodium reactor with a 1 GWh molten salt energy storage system. Sodium offers a 785-Kelvin temperature range between its solid and gaseous states, nearly 8x that of water's 100-Kelvin range. Without requiring costly and risky pressurization, sodium can absorb large amounts of heat. It is not at risk of decomposition at high temperature as water does. Natrium primarily uses austenitic stainless steels for components in contact with molten sodium, due to the nature of the components involved a protective oxide layer is formed on the steels in the presence of the sodium, inhibiting further corrosion. [27] Corrosion monitoring systems utilizing Ultrasonic testing are in place to detect any potential issues. Regular maintenance and inspections help identify and address corrosion concerns before they become significant.

Natrium fuel is made from high-assay, low enriched uranium (HALEU). HALEU is enriched to contain between 5 and 20 percent uranium. The fuel is in the form of metal uranium slugs that are housed within steel tubes to form fuel rods. Whilst this metallic fuel has a melting point much lower than the ceramic pellets used in light water reactors it also has higher heat conduction. Plant sites are expected to be smaller and 4x more efficient than conventional plants. Natrium control rods descend using only gravity in case of equipment damage/failure. Power output is a constant 345 MWe. The plant is designed to run at 100 percent output, 24/7. The storage system is designed to work in tandem with intermittent energy sources, responding to their spikes and crashes. It can produce 150% of the rated power output, or 500 MWe for 5.5 hours. [28]

In June 2021, TerraPower and PacifiCorp (of Warren Buffett) announced plans to build a joint Natrium reactor. [29] Four cities in Wyoming affected by closure of fossil-fuel power plants were under consideration for the demonstration reactor: Gillette, Kemmerer, Glenrock and Rock Springs, Wyoming. [30] PacificCorp does business in Wyoming as Rocky Mountain Power and has a coal power plant in each of the candidate locations. [31] It was announced November 16, 2021 that Kemmerer had been selected. Groundbreaking ceremony was held on June 10, 2024. [32] The power station is designed to consist of 2 adjacent parts - an "energy island" and a "nuclear island". Construction of a "nuclear island" is planned to begin in 2026. [32] The commercial power plant could be operational by 2030. [33] [34]

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device for controlled nuclear reactions

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.

<span class="mw-page-title-main">Kemmerer, Wyoming</span> City in Wyoming, United States

Kemmerer is the largest city in and the county seat of Lincoln County, Wyoming, United States. Its population was 2,415 at the 2020 census.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants.

<span class="mw-page-title-main">Pebble-bed reactor</span> Type of very-high-temperature reactor

The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and using nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Molten-salt reactor</span> Type of nuclear reactor cooled by molten material

A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">Lead-cooled fast reactor</span> Type of nuclear reactor cooled by molten lead

The lead-cooled fast reactor is a nuclear reactor design that uses molten lead or lead-bismuth eutectic coolant. These materials can be used as the primary coolant because they have low neutron absorption and relatively low melting points. Neutrons are slowed less by interaction with these heavy nuclei so these reactors operate with fast neutrons.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

<span class="mw-page-title-main">Hallam Nuclear Power Facility</span> Decommissioned nuclear power plant in Nebraska

The Hallam Nuclear Power Facility (HNPF) in Nebraska was a 75 MWe sodium-cooled graphite-moderated nuclear power plant built by Atomics International and operated by Consumers Public Power District of Nebraska. It was built in tandem with and co-located with a conventional coal-fired power station, the Sheldon Power Station. The facility featured a shared turbo generator that could accept steam from either heat source, and a shared control room.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

<span class="mw-page-title-main">Traveling wave reactor</span> Type of nuclear fission reactor

A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem with the burnup of fissile material. TWRs differ from other kinds of fast-neutron and breeder reactors in their ability to use fuel efficiently without uranium enrichment or reprocessing, instead directly using depleted uranium, natural uranium, thorium, spent fuel removed from light water reactors, or some combination of these materials. The concept is still in the development stage and no TWRs have ever been built.

<span class="mw-page-title-main">Thorium-based nuclear power</span> Nuclear energy extracted from thorium isotopes

Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential. It is difficult to weaponize the uranium-233 that is bred in the reactor. Plutonium-239 is produced at much lower levels and can be consumed in thorium reactors.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The integral molten salt reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy.

<span class="mw-page-title-main">Nuclear microreactor</span> Very small nuclear reactor of 1-20 MW capacity

A nuclear microreactor is a plug-and-play type of nuclear reactor which can be easily assembled and transported by road, rail or air. Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, and range in capacity from 1 to 20 MWe, compared to 20 to 300 MWe for small modular reactors (SMRs). Due to their size, they can be deployed to locations such as isolated military bases or communities affected by natural disasters. It can operate as part of the grid, independent of the grid, or as part of a small grid for electricity generation and heat treatment. They are designed to provide resilient, non-carbon emitting, and independent power in challenging environments. The nuclear fuel source for the majority of the designs is "High-Assay Low-Enriched Uranium", or HALEU.

References

  1. RIL buys stake in US's Terra Power , www.moneycontrol.com
  2. 1 2 Ellis, T.; et al. (2010). "Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs". Proceedings of ICAPP '10: 546–558. ISBN   978-0-89448-081-2. Paper 10189.
  3. "Fast Neutron Reactors". World Nuclear Association. September 2016.
  4. "TerraPower, CNNC team up on travelling wave reactor". World Nuclear News . September 25, 2015.
  5. Xuewan, Chen; Yelin, Mo; Tan, Jason; Ziwei, Tao (January 5, 2019). "Nuclear Power Trial in China Will 'Not Proceed'". Caixin.
  6. Cho, Adrian (October 16, 2020). "Department of Energy picks two advanced nuclear reactors for demonstration projects". Science . Retrieved October 20, 2020. DOE will split the total cost of building each plant with private industry. Each project receives $80 million this year and could receive a total of between $400 million and $4 billion in funding over the next 5 to 7 years. ... Instead of water, the 345 megawatt Natrium reactor from TerraPower, Inc., and GE Hitachi would use molten sodium metal as a coolant. Because sodium has a much higher boiling temperature than water, the coolant would not have to be pressurized, reducing the plant's complexity and cost. The sodium would transfer its heat to molten salt, which could then flow directly to a steam generator or to a storage tank, to be held to generate steam and electricity later. ... Because Natrium sodium coolant is unpressurized, the reactor requires a smaller containment structure than a conventional reactor. The plant also "decouples" the reactor and the electricity generating portions of the facility, which sit on opposite sides of the storage tanks.
  7. Delacruz, Vanessa (August 2012). "Fiscal Year 2012 Institutional Commitments Midyear Progress Report". Energy Citation Database: 1–37. Retrieved August 19, 2012.
  8. TerraPower Team Bios Archived January 3, 2012, at the Wayback Machine , www.TerraPower.com
  9. Wang, Brian (August 30, 2022). "Korea Invests in Bill Gates TerraPower | NextBigFuture.com" . Retrieved September 26, 2022.
  10. MCDERMOTT, JENNIFER (June 10, 2024). "In Wyoming, Bill Gates moves ahead with nuclear project aimed at revolutionizing power generation". AP News. Retrieved June 11, 2024.
  11. Manuel, Obed; Innskeep, Steve (June 14, 2024). "Bill Gates is going nuclear: How his latest project could power U.S. homes and AI". NPR . Gates has invested $1 billion into a nuclear power plant that broke ground in Kemmerer, Wyo., this week. The new facility, designed by the Gates-founded TerraPower, will be smaller than traditional fission nuclear power plants and, in theory, safer because it will use sodium instead of water to cool the reactor's core. TerraPower estimates the plant could be built for up to $4 billion,...
  12. The TerraPower Initiative Archived 2009-07-31 at the Wayback Machine , berkeley.edu
  13. Wald, Matthew L. (February 24, 2009). "TR10: Traveling-Wave Reactor". Technology Review . Retrieved January 30, 2019.
  14. Gurth, Robert (February 27, 2011). "A Window Into the Nuclear Future". The Wall Street Journal. Archived from the original on January 22, 2015. Retrieved August 19, 2012.
  15. "The Design". TerraPower. Archived from the original on December 23, 2016. Retrieved December 23, 2016.
  16. Michal, Rick; Michael Blake (April 2010). "The nuclear news interview. John Gilleland. On the traveling-wave reactor". Internationale Zeitschrift für Kernenergie. 41 (25): 249–252. Archived from the original on January 30, 2016. Retrieved August 19, 2012.
  17. "Depleted Uranium as Fuel Cuts Path to Less Waste". Intellectual Ventures Management, LLC. Archived from the original on April 13, 2012. Retrieved August 19, 2012.
  18. Bill Gates, Toshiba in early talks on nuclear reactor, Sydney Morning Herald, March 23, 2010
  19. 1 2 "ゲイツ、原発挑戦の真相". The Nikkei. March 23, 2010. Retrieved March 24, 2010.
  20. 1 2 "東芝、ゲイツ氏と次世代原発開発へ 維持コスト管理を低減". The Sankei Simbun. March 23, 2010. Archived from the original on March 26, 2010. Retrieved March 25, 2010.
  21. "次世代原子炉:100年連続運転の開発、ゲイツ氏が東芝とタッグ 私財数千億円投じ". Mainichi Newspapers. March 23, 2010. Retrieved March 24, 2010.[ dead link ]
  22. "ゲイツ氏と東芝、原発開発でタッグ? 米企業が協力要請". The Asahi Simbun. March 24, 2010. Archived from the original on March 26, 2010. Retrieved March 24, 2010.
  23. "Southern Company and TerraPower Prep for Testing on Molten Salt Reactor". United States Department of Energy.
  24. Martin, Richard (October 21, 2015). "TerraPower Quietly Explores New Nuclear Reactor Strategy". Technology Review . Retrieved September 20, 2020.
  25. "TerraPower and Southern Company to demonstrate molten salt reactor". Nuclear Engineering International. February 28, 2022.
  26. Cho, Adrian (May 23, 2023). "U.S. planning test reactor to run on weapons-grade uranium". www.science.org. Retrieved June 5, 2023.
  27. Bonk, Alexander. "Solar Salt - Pushing an old material for energy storage to a new limit". ScienceDirect. ScienceDirect. Retrieved August 26, 2024.
  28. Blain, Loz (March 9, 2021). "Bill Gates's next-gen nuclear plant packs in grid-scale energy storage". New Atlas. Retrieved March 15, 2021.
  29. "Bill Gates and Warren Buffett to build new kind of nuclear reactor in Wyoming". the Guardian. Reuters. June 3, 2021. Retrieved June 3, 2021.
  30. "Will Wyoming Embrace Nuclear Power?". Nuclear Street. June 9, 2021. Retrieved June 10, 2021.
  31. Greg Johnson (June 2, 2021). "Wyoming to be home to 'game-changing' nuclear power plant". Gillette News Record. Retrieved June 10, 2021. In cooperation with PacifiCorp and Rocky Mountain Power, the nuclear reactor will replace a Wyoming coal-fired plant upon retirement. A specific location hasn't been determined, but it will be at one of our Rocky Mountain Power's plants in Wyoming: the Jim Bridger plant near Rock Springs, the Dave Johnston plant near Glenrock, the Naughton plant at Kemmerer or the Wyodak plant near Gillette.
  32. 1 2 Bill Gates (June 10, 2024). "We just broke ground on America's first next-gen nuclear facility" (Press release). GatesNotes. Retrieved September 29, 2024.
  33. TerraPower (November 17, 2021). "TerraPower selects Kemmerer, Wyoming as the preferred site for advanced reactor demonstration plant" (Press release). Nuclear Street. Retrieved November 18, 2021.
  34. Pollack, Nicole (May 5, 2023). "Bill Gates introduces himself to Kemmerer, Wyoming". Casper Star-Tribune Online. Retrieved May 6, 2023.