Tetrabromobisphenol A diglycidyl ether

Last updated
Tetrabromobisphenol A diglycidyl ether
Tetrabromobisphenol A diglycidyl ether.png
Names
IUPAC name
2-[[2,6-dibromo-4-[2-[3,5-dibromo-4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]methyl]oxirane
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
EC Number
  • 221-346-0
PubChem CID
  • InChI=1S/C21H20Br4O4/c1-21(2,11-3-15(22)19(16(23)4-11)28-9-13-7-26-13)12-5-17(24)20(18(25)6-12)29-10-14-8-27-14/h3-6,13-14H,7-10H2,1-2H3
    Key: ZJRAAAWYHORFHN-UHFFFAOYSA-N
  • CC(C)(C1=CC(=C(C(=C1)Br)OCC2CO2)Br)C3=CC(=C(C(=C3)Br)OCC4CO4)Br
Properties
C21H20Br4O4
Molar mass 656.003 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetrabromobisphenol A diglycidyl ether is an epoxy resin consisting of tetrabromobisphenol A with ether linkages to two epichlorohydrin groups. An alternative structural comparison is as brominated form of bisphenol A diglycidyl ether. It is a brominated aromatic chemical used principally for giving flame retardant properties to materials. [1] It is TSCA and REACH registered and has the molecular formula C21H20Br4O4. The IUPAC name is 2-{[2,6-dibromo-4-(2-{3,5-dibromo-4-[(oxiran-2-yl)methoxy]phenyl}propan-2-yl)phenoxy]methyl}oxirane. [2] [3]

Contents

Synthesis

A method of synthesis is to take tetrabromobisphenol A and react with epichlorohydrin using a base to form the halohydrin. [4] This species is then further reacted with sodium hydroxide to form the diglycidyl ether. [5] Higher molecular weight epoxy resins with bromine atoms along the chain maybe synthesized by reacting standard epoxy resin with tetrabromobisphenol A in a technique called advancement. [6]

Uses

Its primary use is as a flame retardant in various materials including composites. [7] [8] It finds extensive use in electronic applications including printed circuit boards and general packaging for electronic materials. [9] [10] [11]

Toxicity

The toxicity has been studied extensively, and even dusts containing the material have been studied for safer reuse and recovery. [12] The material and its analogs have likewise had their toxicological properties studied. [13] It is used as a control in studies evaluating the use of non-halogenated flame retardants. [14]

Further reading

References

  1. PubChem. "Tetrabromobisphenol A diglycidyl ether". pubchem.ncbi.nlm.nih.gov. Retrieved 2024-11-19.
  2. "Registration Dossier - ECHA". echa.europa.eu. Retrieved 2024-11-19.
  3. "ECHA CHEM". chem.echa.europa.eu. Retrieved 2024-11-19.
  4. Fayaz, Iram; Peerzada, Ghulam Mustafa; Ganaie, Nadeem Bashir (2021-12-27). "Comparative Study of Different Methods of Synthesis and Their Effect on the Thermomechanical Properties of a Halogenated Epoxy-Based Flame-Retardant Resin". ACS Omega. 7 (1): 1035–1047. doi:10.1021/acsomega.1c05626. ISSN   2470-1343. PMC   8756803 . PMID   35036767.
  5. Li, Botao. "Synthesis of the Diglycidyl Ether of Brominated Neopentyl Glycol and Properties of the Resulting Cured Material". SSRN   4710385.
  6. Barontini, Federica; Cozzani, Valerio; Petarca, Luigi (2000-04-01). "Calorimetric and Kinetic Analysis of the Diglycidyl Ether of the Bisphenol A/Tetrabromobisphenol A Reaction for the Production of Linear Brominated Epoxy Resins" . Industrial & Engineering Chemistry Research. 39 (4): 855–863. doi:10.1021/ie9908130. ISSN   0888-5885.
  7. Rafique, Irum; Kausar, Ayesha; Muhammad, Bakhtiar (2017-02-11). "Fabrication and Characterization of High-Performance Diglycidyl Ether of Bisphenol-A/Tetrabromobisphenol-A Blend Reinforced with Multiwalled Carbon Nanotube Composite" . Polymer-Plastics Technology and Engineering. 56 (3): 321–333. doi:10.1080/03602559.2016.1233255. ISSN   0360-2559.
  8. Ziraroui. "Quantum Chemical investigation of electronic effect impact on epoxies thermal properties QSPR model of thermal degradation of some diglycidyl ether bisphenol derivatives diamine systems".
  9. Wang, Chun-Shan; Berman, J. R.; Walker, L. L.; Mendoza, A. (1991-10-05). "Meta-bromobiphenol epoxy resins: Applications in electronic packaging and printed circuit board" . Journal of Applied Polymer Science. 43 (7): 1315–1321. doi:10.1002/app.1991.070430713. ISSN   0021-8995.
  10. Gu, Hongbo; Guo, Jiang; He, Qingliang; Tadakamalla, Sruthi; Zhang, Xi; Yan, Xingru; Huang, Yudong; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu (2013-06-12). "Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles" . Industrial & Engineering Chemistry Research. 52 (23): 7718–7728. doi:10.1021/ie400275n. ISSN   0888-5885.
  11. P. M., Visakh (2015). Arao, Yoshihiko (ed.). Flame retardants: polymer blends, composites and nanocomposites. Engineering materials. Cham Heidelberg New York London: Springer. ISBN   978-3-319-03466-9.
  12. Grabda, Mariusz; Oleszek, Sylwia; Shibata, Etsuro; Nakamura, Takashi (2014-08-15). "Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA" . Journal of Hazardous Materials. 278: 25–33. Bibcode:2014JHzM..278...25G. doi:10.1016/j.jhazmat.2014.05.084. ISSN   0304-3894. PMID   24945793.
  13. Ren, Xiao-Min; Yao, Linlin; Xue, Qiao; Shi, Jianbo; Zhang, Qinghua; Wang, Pu; Fu, Jianjie; Zhang, Aiqian; Qu, Guangbo; Jiang, Guibin (October 2020). "Binding and Activity of Tetrabromobisphenol A Mono-Ether Structural Analogs to Thyroid Hormone Transport Proteins and Receptors". Environmental Health Perspectives. 128 (10). Bibcode:2020EnvHP.128j7008R. doi:10.1289/EHP6498. ISSN   0091-6765. PMC   7584160 . PMID   33095664.
  14. Kettrup, A. A.; Lenoir, D.; Thumm, W.; Kampke-Thiel, K.; Beck, B. (1996-11-01). "Evaluation of ecotoxicological properties of new duroplastic materials without halogen as flame retardant" . Polymer Degradation and Stability. Fire Retardant Polymers. 54 (2): 175–180. doi:10.1016/S0141-3910(96)00041-9. ISSN   0141-3910.