Tetrahydropyran

Last updated
Tetrahydropyran
Tetrahydropyran Tetrahydropyran.svg
Tetrahydropyran
THP Oxane-3D-vdW.png
THP
Names
Preferred IUPAC name
Oxane
Other names
Tetrahydropyran,
Oxacyclohexane,
1,5-epoxypentane
Identifiers
3D model (JSmol)
102436
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.005.048 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-552-8
PubChem CID
UNII
  • InChI=1S/C5H10O/c1-2-4-6-5-3-1/h1-5H2 Yes check.svgY
    Key: DHXVGJBLRPWPCS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H10O/c1-2-4-6-5-3-1/h1-5H2
    Key: DHXVGJBLRPWPCS-UHFFFAOYAV
  • O1CCCCC1
Properties
C5H10O
Molar mass 86.134 g·mol−1
AppearanceColourless liquid
Density 0.880 g/cm3
Melting point −45 °C (−49 °F; 228 K)
Boiling point 88 °C (190 °F; 361 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Flammable, Causes skin irritation
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2
4
1
Flash point −15.6 °C (3.9 °F; 257.5 K)
Lethal dose or concentration (LD, LC):
3000 mg/kg (oral, rat)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetrahydropyran (THP) is the organic compound consisting of a saturated six-membered ring containing five carbon atoms and one oxygen atom. It is named by reference to pyran, which contains two double bonds, and may be produced from it by adding four hydrogens. In 2013, its preferred IUPAC name was established as oxane. [1] The compound is a colourless volatile liquid. Derivatives of tetrahydropyran are, however, more common. 2-Tetrahydropyranyl (THP-) ethers derived from the reaction of alcohols and 3,4-dihydropyran are commonly used as protecting groups in organic synthesis. [2] Furthermore, a tetrahydropyran ring system, i.e., five carbon atoms and an oxygen, is the core of pyranose sugars, such as glucose.

Contents

Structure and preparation

In gas phase, the THP exists in its lowest energy Cs symmetry chair conformation. [3]

One classic procedure for the organic synthesis of tetrahydropyran is by hydrogenation of the 3,4-isomer of dihydropyran with Raney nickel. [4]

Tetrahydropyranyl derivatives

Although tetrahydropyran is an obscure compound, tetrahydropyranyl ethers are commonly used in organic synthesis. Specifically, the 2-tetrahydropyranyl (THP) group is a common protecting group for alcohols. [5] [6] Alcohols react with 3,4-dihydropyran to give 2-tetrahydropyranyl ethers. These ethers are resilient to a variety of reactions. The alcohol can later be restored by acid-catalyzed hydrolysis. This hydrolysis reforms the parent alcohol as well as 5-hydroxypentanal. THP ethers derived from chiral alcohols form diastereomers. Another undesirable feature is that the ethers display complex NMR spectra, which interfere with analysis. [2]

Protection of alcohol as THP ether followed by deprotection. Both steps require acid catalysts. THPmeth.png
Protection of alcohol as THP ether followed by deprotection. Both steps require acid catalysts.

In a typical procedure, the alcohol is treated with 3,4-dihydropyran and p-toluenesulfonic acid in dichloromethane at ambient temperature. [2]

THP protection used in the total synthesis of solandelactone E THPProtection.png
THP protection used in the total synthesis of solandelactone E

Alternatively, the THP ether can be generated under the conditions akin to those for the Mitsunobu reaction. Thus the alcohol is treated with 2-hydroxytetrahydropyranyl, triphenylphosphine, and diethyl azodicarboxylate (DEAD) in tetrahydrofuran (THF).

Commonly, THP ethers are deprotected using acetic acid in a THF/water solution, p-toluenesulfonic acid in water, or Pyridinium p-toluenesulfonate (PPTS) in ethanol.

Oxanes

Oxanes are the class of hexic cyclic ether rings with tetrahydropyran as the root chemical. Oxanes have one or more carbon atoms replaced with an oxygen atom. [8] The IUPAC preferred name for tetrahydropyran is now oxane. [9]

Oxane is also the brand name for cis-2-methyl-4-propyl-1,3-oxathiane, a commercial fragrance. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom bonded to two organyl groups. They have the general formula R−O−R′, where R and R′ represent the organyl groups. Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Anisole</span> Organic compound (CH₃OC₆H₅) also named methoxybenzene

Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is mainly made synthetically and is a precursor to other synthetic compounds. Structurally, it is an ether with a methyl and phenyl group attached. Anisole is a standard reagent of both practical and pedagogical value.

<span class="mw-page-title-main">Diisopropyl ether</span> Chemical compound

Diisopropyl ether is a secondary ether that is used as a solvent. It is a colorless liquid that is slightly soluble in water, but miscible with organic solvents. It is used as an extractant and an oxygenate gasoline additive. It is obtained industrially as a byproduct in the production of isopropanol by hydration of propylene. Diisopropyl ether is sometimes represented by the abbreviation DIPE.

<span class="mw-page-title-main">Trimethylaluminium</span> Chemical compound

Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium.

<span class="mw-page-title-main">Amidine</span> Organic compounds

Amidines are organic compounds with the functional group RC(NR)NR2, where the R groups can be the same or different. They are the imine derivatives of amides (RC(O)NR2). The simplest amidine is formamidine, HC(=NH)NH2.

<span class="mw-page-title-main">Diethyl azodicarboxylate</span> Chemical compound

Diethyl azodicarboxylate, conventionally abbreviated as DEAD and sometimes as DEADCAT, is an organic compound with the structural formula CH3CH2−O−C(=O)−N=N−C(=O)−O−CH2CH3. Its molecular structure consists of a central azo functional group, RN=NR, flanked by two ethyl ester groups. This orange-red liquid is a valuable reagent but also quite dangerous and explodes upon heating. Therefore, commercial shipment of pure diethyl azodicarboxylate is prohibited in the United States and is carried out either in solution or on polystyrene particles.

Dioxolane is a heterocyclic acetal with the chemical formula (CH2)2O2CH2. It is related to tetrahydrofuran (THF) by replacement of the methylene group (CH2) at the 2-position with an oxygen atom. The corresponding saturated 6-membered C4O2 rings are called dioxanes. The isomeric 1,2-dioxolane (wherein the two oxygen centers are adjacent) is a peroxide. 1,3-dioxolane is used as a solvent and as a comonomer in polyacetals.

<i>tert</i>-Butyllithium Chemical compound

tert-Butyllithium is a chemical compound with the formula (CH3)3CLi. As an organolithium compound, it has applications in organic synthesis since it is a strong base, capable of deprotonating many carbon molecules, including benzene. tert-Butyllithium is available commercially as solutions in hydrocarbons (such as pentane); it is not usually prepared in the laboratory.

<span class="mw-page-title-main">Triphenylmethanol</span> Chemical compound

Triphenylmethanol is an organic compound. It is a white crystalline solid that is insoluble in water and petroleum ether, but well soluble in ethanol, diethyl ether, and benzene. In strongly acidic solutions, it produces an intensely yellow color, due to the formation of a stable "trityl" carbocation. Many derivatives of triphenylmethanol are important dyes.

The Schlenk equilibrium, named after its discoverer Wilhelm Schlenk, is a chemical equilibrium taking place in solutions of Grignard reagents and Hauser bases

<span class="mw-page-title-main">Dimethoxymethane</span> Chemical compound

Dimethoxymethane, also called methylal, is a colorless flammable liquid with a low boiling point, low viscosity and excellent dissolving power. It has a chloroform-like odor and a pungent taste. It is the dimethyl acetal of formaldehyde. Dimethoxymethane is soluble in three parts water and miscible with most common organic solvents.

In organic chemistry, a methoxymethyl ether is a functional group with the formula ROCH2OCH3, abbreviated MOM. It is a kind of chloroalkyl ether and, like its congeners, often employed in organic synthesis to protect alcohols. They are usually derived from 2-methoxymethyl chloride. Closely related to MOM ethers are methoxyethoxymethoxy (MEM) protecting groups, introduced using 2-methoxyethoxymethyl chloride. The MEM protecting groups are more easily installed and more easily removed.

3,4-Dihydropyran (DHP) is a heterocyclic compound with the formula C5H8O. The six-membered C5O ring has the unsaturation adjacent to oxygen. The isomeric 3,6-dihydropyran has a methylene separating the double bond and oxygen. DHP is used for protecting group for alcohols. It is a colorless liquid.

<span class="mw-page-title-main">Thioanisole</span> Chemical compound

Thioanisole is an organic compound with the formula CH3SC6H5. It is a colorless liquid that is soluble in organic solvents. It is the simplest alkyl–aryl thioether. The name indicates that this compound is the sulfur analogue—the thioether rather than the oxygen-centered ether—of anisole.

<span class="mw-page-title-main">Diethyl oxomalonate</span> Chemical compound

Diethyl oxomalonate is the diethyl ester of mesoxalic acid (ketomalonic acid), the simplest oxodicarboxylic acid and thus the first member (n = 0) of a homologous series HOOC–CO–(CH2)n–COOH with the higher homologues oxalacetic acid (n = 1), α-ketoglutaric acid (n = 2) and α-ketoadipic acid (n = 3) (the latter a metabolite of the amino acid lysine). Diethyl oxomalonate reacts because of its highly polarized keto group as electrophile in addition reactions and is a highly active reactant in pericyclic reactions such as the Diels-Alder reactions, cycloadditions or ene reactions. At humid air, mesoxalic acid diethyl ester reacts with water to give diethyl mesoxalate hydrate and the green-yellow oil are spontaneously converted to white crystals.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

References

  1. "New IUPAC Organic Nomenclature - Chemical Information BULLETIN" (PDF).
  2. 1 2 3 Wuts, Peter G. M.; Greene, Theodora W. (2006). "Protection for the Hydroxyl Group, Including 1,2- and 1,3-Diols". Greene's Protective Groups in Organic Synthesis (4th ed.). pp. 16–366. doi:10.1002/9780470053485.ch2. ISBN   9780470053485.
  3. Builth-Williams, J. D.; Bellm, S. M.; Chiari, L.; Thorn, P. A.; Jones, D. B.; Chaluvadi, H.; Madison, D. H.; Ning, C. G.; Lohmann, B. (2013). "A dynamical (e,2e) investigation of the structurally related cyclic ethers tetrahydrofuran, tetrahydropyran, and 1,4-dioxane" (PDF). Journal of Chemical Physics . 139 (3): 034306. Bibcode:2013JChPh.139c4306B. doi:10.1063/1.4813237. hdl: 2328/26887 . PMID   23883026. S2CID   205181690.
  4. Andrus, D. W.; Johnson, John R. (1943). "Tetrahydropyran". Organic Syntheses . 23: 90. doi:10.15227/orgsyn.023.0090 ; Collected Volumes, vol. 3, p. 794.
  5. Earl, R. A.; Townsend, L. B. (1981). "Methyl 4-Hydroxy-2-butynoate". Organic Syntheses . 60: 81. doi:10.15227/orgsyn.060.0081 ; Collected Volumes, vol. 7, p. 334.
  6. Kluge, Arthur F. (1986). "Diethyl [(2-Tetrahydropyranyloxy)methyl]phosphonate". Organic Syntheses . 64: 80. doi:10.15227/orgsyn.064.0080 ; Collected Volumes, vol. 7, p. 160.
  7. Robinson, Anna; Aggarwal, Varinder K. (2010). "Asymmetric Total Synthesis of Solandelactone E: Stereocontrolled Synthesis of the 2-ene-1,4-diol Core through a Lithiation–Borylation–Allylation Sequence". Angewandte Chemie International Edition . 49 (37): 6673–6675. doi:10.1002/anie.201003236. PMID   20683835.
  8. Ferenc Notheisz, Mihály Bartók, "Hydrogenolysis of C–O, C–N and C–X bonds", p. 416 in, R. A. Sheldon, Herman van Bekkum (eds), Fine Chemicals through Heterogeneous Catalysis, John Wiley & Sons, 2008 ISBN   3527612971.
  9. "New IUPAC Organic Nomenclature - Chemical Information BULLETIN" (PDF).
  10. Panten, Johannes; Surburg, Horst (2016). "Flavors and Fragrances, 3. Aromatic and Heterocyclic Compounds". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–45. doi:10.1002/14356007.t11_t02. ISBN   978-3-527-30673-2.