Names | |
---|---|
IUPAC name Diethyl diazenedicarboxylate | |
Systematic IUPAC name Ethyl N-ethoxycarbonyliminocarbamate | |
Other names
| |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.016.202 |
EC Number |
|
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C6H10N2O4 | |
Molar mass | 174.156 g·mol−1 |
Appearance | Orange to red to orange liquid [2] |
Density | 1.11 g/cm3 [3] |
Melting point | 6 °C (43 °F; 279 K) [4] |
Boiling point | 104.5 °C (220.1 °F; 377.6 K) at 12 mm Hg [3] |
Refractive index (nD) | 1.420 (20 °C) [3] |
Hazards | |
GHS labelling: | |
Danger | |
H240, H302, H312, H315, H319, H332, H335 | |
P210, P220, P234, P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P370+P378, P370+P380+P375, P403+P233, P403+P235, P405, P411, P420, P501 | |
Flash point | 85 °C (185 °F; 358 K) [5] |
Safety data sheet (SDS) | External MSDS |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Diethyl azodicarboxylate, conventionally abbreviated as DEAD and sometimes as DEADCAT, [6] [7] is an organic compound with the structural formula CH3CH2−O−C(=O)−N=N−C(=O)−O−CH2CH3. Its molecular structure consists of a central azo functional group, RN=NR, flanked by two ethyl ester groups. This orange-red liquid is a valuable reagent but also quite dangerous and explodes upon heating. Therefore, commercial shipment of pure diethyl azodicarboxylate is prohibited in the United States and is carried out either in solution or on polystyrene particles.
DEAD is an aza-dienophile and an efficient dehydrogenating agent, converting alcohols to aldehydes, thiols to disulfides and hydrazo groups to azo groups; it is also a good electron acceptor. While DEAD is used in numerous chemical reactions it is mostly known as a key component of the Mitsunobu reaction, a common strategy for the preparation of an amine, azide, ether, thioether, or ester from the corresponding alcohol. [8] It is used in the synthesis of various natural products and pharmaceuticals such as zidovudine, an AIDS drug; FdUMP, a potent antitumor agent; and procarbazine, a chemotherapy drug.
DEAD is an orange-red liquid which weakens its color to yellow or colorless upon dilution or chemical reaction. This color change is conventionally used for visual monitoring of the synthesis. DEAD dissolves in most common organic solvents, such as toluene, chloroform, ethanol, [9] tetrahydrofuran and dichloromethane [3] [10] but has low solubility in water or carbon tetrachloride; the solubility in water is higher for the related azo compound dimethyl azodicarboxylate. [4]
DEAD is a strong electron acceptor and easily oxidizes a solution of sodium iodide in glacial acetic acid. It also reacts vigorously with hydrazine hydrate producing diethyl hydrazodicarboxylate and evolving nitrogen. Linear combination of atomic orbitals molecular orbital method (LCAO-MO) calculations suggest that the molecule of DEAD is unusual in having a high-lying vacant bonding orbital, and therefore tends to withdraw hydrogen atoms from various hydrogen donors. Photoassisted removal of hydrogen by DEAD was demonstrated for isopropyl alcohol, resulting in pinacol and tetraethyl tetrazanetetracarboxylate, and for acetaldehyde yielding diacetyl and diethyl hydrazodicarboxylate. Similarly, reacting DEAD with ethanol and cyclohexanol abstracts hydrogen producing acetaldehyde and cyclohexanone. Those reactions also proceed without light, although at much lower yields. [9] Thus, in general DEAD is an aza-dienophile and dehydrogenating agent, converting alcohols to aldehydes, thiols to disulfides and hydrazo groups to azo groups. [11] It also undergoes pericyclic reactions with alkenes and dienes via ene and Diels–Alder mechanisms. [12]
Although available commercially, diethyl azodicarboxylate can be prepared fresh in the laboratory, especially if required in pure, non-diluted form. A two-step synthesis starts from hydrazine, first by alkylation with ethyl chloroformate, followed by treating the resulting diethyl hydrazodicarboxylate with chlorine (bubbling through the solution), hypochlorous acid, concentrated nitric acid or red fuming nitric acid. The reaction is carried out in an ice bath, and the reagents are added dropwise so that the temperature does not rise above 20 °C. Diethyl hydrazodicarboxylate is a solid with melting temperature of 131–133 °C which is collected as a residue; it is significantly more stable to heating than DEAD and is conventionally dried at a temperature of about 80 °C. [4] [13]
DEAD is a reagent in the Mitsunobu reaction where it forms an adduct with phosphines (usually triphenylphosphine) and assists the synthesis of esters, ethers, amines and thioethers from alcohols. Reactions normally result in the inversion of molecular symmetry.
DEAD was used in the original 1967 article by Oyo Mitsunobu, [14] and his 1981 review on the use of diethyl azodicarboxylate is a top-cited chemistry article. [15] [16] The Mitsunobu reaction has several applications in the synthesis of natural products and pharmaceuticals.
In the above reaction, which is assisted either by DEAD or DIAD (diisopropyl azodicarboxylate), thymidine 1 transforms to the derivative 2. The latter easily converts to zidovudine 4 (also known as azidothymidine or AZT), an important antiviral drug, used among others in the treatment of AIDS. [17] [18] [19] Another example of pharmaceutical application of DEAD-assisted Mitsunobu reaction is the synthesis of bis[(pivaloyloxy)methyl [PIVz] derivative of 2'-deoxy-5-fluorouridine 5'-monophosphate (FdUMP), which is a potent antitumor agent. [20]
The azo group in DEAD is a Michael acceptor. In the presence of a copper(II) catalyst, DEAD assists conversion of β-keto esters to the corresponding hydrazine derivatives. [21]
The substitution of boronic acid esters proceeds similarly: [22]
DEAD is an efficient component in Diels-Alder reactions and in click chemistry, for example the synthesis of bicyclo[2.1.0]pentane, which originates from Otto Diels. [23] It has also been used to generate aza-Baylis-Hillman adducts with acrylates. [24]
DEAD can be used for synthesis of heterocyclic compounds. Thus, pyrazoline derivatives convert by condensation to α,β-unsaturated ketones: [25]
Another application is the use of DEAD as an enophile in ene reactions:
DEAD is toxic, shock and light sensitive; it can violently explode when its undiluted form is heated above 100 °C. [2] [3] [26] Shipment by air of pure diethyl azodicarboxylate is prohibited in the United States and is carried out in solution, typically about 40% DEAD in toluene. [27] Alternatively, DEAD is transported and stored on 100–300 mesh polystyrene particles at a concentration of about 1 mmol/g. [3] The time-weighed average threshold limit value for exposure to DEAD over a typical 40-hour working week is 50 parts per million; that is, DEAD is half as toxic as, e.g., carbon monoxide. [28] Safety hazards have resulted in rapid decline of DEAD usage and replacement with DIAD and other similar compounds.
In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.
In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.
Diethyl malonate, also known as DEM, is the diethyl ester of malonic acid. It occurs naturally in grapes and strawberries as a colourless liquid with an apple-like odour, and is used in perfumes. It is also used to synthesize other compounds such as barbiturates, artificial flavourings, vitamin B1, and vitamin B6.
Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.
The Mitsunobu reaction is an organic reaction that converts an alcohol into a variety of functional groups, such as an ester, using triphenylphosphine and an azodicarboxylate such as diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD). Although DEAD and DIAD are most commonly used, there are a variety of other azodicarboxylates available which facilitate an easier workup and/or purification and in some cases, facilitate the use of more basic nucleophiles. It was discovered by Oyo Mitsunobu (1934–2003). In a typical protocol, one dissolves the alcohol, the carboxylic acid, and triphenylphosphine in tetrahydrofuran or other suitable solvent, cool to 0 °C using an ice-bath, slowly add the DEAD dissolved in THF, then stir at room temperature for several hours. The alcohol reacts with the phosphine to create a good leaving group then undergoes an inversion of stereochemistry in classic SN2 fashion as the nucleophile displaces it. A common side-product is produced when the azodicarboxylate displaces the leaving group instead of the desired nucleophile. This happens if the nucleophile is not acidic enough or is not nucleophilic enough due to steric or electronic constraints. A variation of this reaction utilizing a nitrogen nucleophile is known as a Fukuyama–Mitsunobu.
Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen. Simple functional groups can be arranged in order of increasing oxidation state. The oxidation numbers are only an approximation:
Meldrum's acid or 2,2-dimethyl-1,3-dioxane-4,6-dione is an organic compound with formula C6H8O4. Its molecule has a heterocyclic core with four carbon and two oxygen atoms; the formula can also be written as [−O−(C 2)−O−(C=O)−(CH2)−(C=O)−].
The Barton–McCombie deoxygenation is an organic reaction in which a hydroxy functional group in an organic compound is replaced by a hydrogen to give an alkyl group. It is named after British chemists Sir Derek Harold Richard Barton and Stuart W. McCombie.
Diisopropyl azodicarboxylate (DIAD) is the diisopropyl ester of azodicarboxylic acid. It is used as a reagent in the production of many organic compounds. It is often used in the Mitsunobu reaction, where it serves as an oxidizer of triphenylphosphine to triphenylphosphine oxide. It has also been used to generate aza-Baylis-Hillman adducts with acrylates. It can also serve as a selective deprotectant of N-benzyl groups in the presence of other protecting groups.
Tetrahydropyran (THP) is the organic compound consisting of a saturated six-membered ring containing five carbon atoms and one oxygen atom. It is named by reference to pyran, which contains two double bonds, and may be produced from it by adding four hydrogens. In 2013, its preferred IUPAC name was established as oxane. The compound is a colourless volatile liquid. Derivatives of tetrahydropyran are, however, more common. 2-Tetrahydropyranyl (THP-) ethers derived from the reaction of alcohols and 3,4-dihydropyran are commonly used as protecting groups in organic synthesis. Furthermore, a tetrahydropyran ring system, i.e., five carbon atoms and an oxygen, is the core of pyranose sugars, such as glucose.
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.
Oseltamivir total synthesis concerns the total synthesis of the antiinfluenza drug oseltamivir marketed by Hoffmann-La Roche under the trade name Tamiflu. Its commercial production starts from the biomolecule shikimic acid harvested from Chinese star anise and from recombinant E. coli. Control of stereochemistry is important: the molecule has three stereocenters and the sought-after isomer is only 1 of 8 stereoisomers.
The Markó–Lam deoxygenation is an organic chemistry reaction where the hydroxy functional group in an organic compound is replaced by a hydrogen atom to give an alkyl group. The Markó-Lam reaction is a variant of the Bouveault–Blanc reduction and an alternative to the classical Barton–McCombie deoxygenation. It is named for the Belgian chemists István Markó and Kevin Lam.
Electrophilic amination is a chemical process involving the formation of a carbon–nitrogen bond through the reaction of a nucleophilic carbanion with an electrophilic source of nitrogen.
The Jones oxidation is an organic reaction for the oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. It is named after its discoverer, Sir Ewart Jones. The reaction was an early method for the oxidation of alcohols. Its use has subsided because milder, more selective reagents have been developed, e.g. Collins reagent.
2-Methyl-6-nitrobenzoic anhydride is an organic acid anhydride also known as the Shiina reagent, having a structure wherein carboxylic acids undergo intermolecular dehydration condensation. It was developed in 2002 by Prof. Isamu Shiina. The compound is often abbreviated MNBA.
Ethyl cyanoacetate is an organic compound that contains a carboxylate ester and a nitrile. It is a colourless liquid with a pleasant odor. This material is useful as a starting material for synthesis due to its variety of functional groups and chemical reactivity.
Diethyl phosphite is the organophosphorus compound with the formula (C2H5O)2P(O)H. It is a popular reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. Diethyl phosphite is a colorless liquid. The molecule is tetrahedral.
In organic chemistry, the Myers allene synthesis is a chemical reaction that converts a propargyl alcohol into an allene by way of an arenesulfonylhydrazine as a key intermediate. This name reaction is one of two discovered by Andrew Myers that are named after him; both this reaction and the Myers deoxygenation reaction involve the same type of intermediate.
Teruaki Mukaiyama was a Japanese organic chemist. One of the most prolific chemists of the 20th century in the field of organic synthesis, Mukaiyama helped establish the field of organic chemistry in Japan after World War II.