Tibezonium iodide

Last updated
Tibezonium iodide
Tibenzonium iodide.svg
Clinical data
AHFS/Drugs.com International Drug Names
Routes of
administration
Topical (mouth)
ATC code
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
ECHA InfoCard 100.053.876 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C28H32IN3S2
Molar mass 601.61 g·mol−1
3D model (JSmol)
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Tibezonium iodide (or tibenzonium iodide) is an antiseptic for use in the mouth. [1] It is a salt consisting of a lipophilic quaternary ammonium cation and iodide as the counterion.

Related Research Articles

Iodine Chemical element with atomic number 53

Iodine is a chemical element with the symbol I and atomic number 53. The heaviest of the stable halogens, it exists as a lustrous, purple-black non-metallic solid at standard conditions that melts to form a deep violet liquid at 114 degrees Celsius, and boils to a violet gas at 184 degrees Celsius. However, it sublimes easily with gentle heat, resulting in a widespread misconception even taught in some science textbooks that it does not melt. The element was discovered by the French chemist Bernard Courtois in 1811, and was named two years later by Joseph Louis Gay-Lussac, after the Greek ἰώδης "violet-coloured".

Silver iodide inorganic compound

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because AgI is highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

An iodide ion is the ion I. Compounds with iodine in formal oxidation state −1 are called iodides. This page is for the iodide ion and its salts, not organoiodine compounds. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability.

Echothiophate pharmaceutical drug

Echothiophate (Phospholine) is an irreversible acetylcholinesterase inhibitor.

Lead(II) iodide chemical compound

Lead(II) iodide or lead iodide is a salt with the formula PbI
2
. At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated. It was formerly called plumbous iodide.

Halocarbon compounds are chemicals in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds. Chlorine halocarbons are the most common and are called organochlorides.

Potassium iodide chemical compound

Potassium iodide is a chemical compound, medication, and dietary supplement. As a medication it is used to treat hyperthyroidism, in radiation emergencies, and to protect the thyroid gland when certain types of radiopharmaceuticals are used. In the developing world it is also used to treat skin sporotrichosis and phycomycosis. As a supplement it is used in those who have low intake of iodine in the diet. It is given by mouth.

Phosphorus triiodide chemical compound

Phosphorus triiodide (PI3) is an unstable red solid which reacts violently with water. It is a common misconception that PI3 is too unstable to be stored; it is, in fact, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent. Note that phosphorus also forms a lower iodide, P2I4, but the existence of PI5 is doubtful at room temperature.

Hydrogen iodide chemical compound

Hydrogen iodide (HI) is a diatomic molecule and hydrogen halide. Aqueous solutions of HI are known as hydroiodic acid or hydriodic acid, a strong acid. Hydrogen iodide and hydroiodic acid are, however, different in that the former is a gas under standard conditions, whereas the other is an aqueous solution of the gas. They are interconvertible. HI is used in organic and inorganic synthesis as one of the primary sources of iodine and as a reducing agent.

Cativa process chemical process

The Cativa process is a method for the production of acetic acid by the carbonylation of methanol. The technology, which is similar to the Monsanto process, was developed by BP Chemicals and is under license by BP Plc. The process is based on an iridium-containing catalyst, such as the complex [Ir(CO)2I2] (1).

Sodium iodide chemical compound

Sodium iodide (chemical formula NaI) is an ionic compound formed from the chemical reaction of sodium metal and iodine. Under standard conditions, it is a white, water-soluble solid comprising a 1:1 mix of sodium cations (Na+) and iodide anions (I) in a crystal lattice. It is used mainly as a nutritional supplement and in organic chemistry. It is produced industrially as the salt formed when acidic iodides react with sodium hydroxide. It is a chaotropic salt.

Iodomethane, also called methyl iodide, and commonly abbreviated "MeI", is the chemical compound with the formula CH3I. It is a dense, colorless, volatile liquid. In terms of chemical structure, it is related to methane by replacement of one hydrogen atom by an atom of iodine. It is naturally emitted by rice plantations in small amounts. It is also produced in vast quantities estimated to be greater than 214,000 tons annually by algae and kelp in the world's temperate oceans, and in lesser amounts on land by terrestrial fungi and bacteria. It is used in organic synthesis as a source of methyl groups.

Isotopes of iodine

There are 37 known isotopes of iodine (53I) from 108I to 144I; all undergo radioactive decay except 127I, which is stable. Iodine is thus a monoisotopic element.

Lithium iodide chemical compound

Lithium iodide, or LiI, is a compound of lithium and iodine. When exposed to air, it becomes yellow in color, due to the oxidation of iodide to iodine. It crystallizes in the NaCl motif. It can participate in various hydrates.

Copper(I) iodide chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

Mercury(II) iodide chemical compound

Mercury(II) iodide is a chemical compound with the molecular formula HgI2. It is typically produced synthetically but can also be found in nature as the extremely rare mineral coccinite. Unlike the related mercury(II) chloride it is hardly soluble in water (<100 ppm).

Sodium/iodide cotransporter mammalian protein found in Homo sapiens

The sodium/iodide cotransporter, also known as the sodium/iodide symporter (NIS), is a protein that in humans is encoded by the SLC5A5 gene. It is a transmembrane glycoprotein with a molecular weight of 87 kDa and 13 transmembrane domains, which transports two sodium cations (Na+) for each iodide anion (I) into the cell. NIS mediated uptake of iodide into follicular cells of the thyroid gland is the first step in the synthesis of thyroid hormone.

Isopropamide chemical compound

Isopropamide (R5) is a long-acting anticholinergic drug. It is used in the treatment of peptic ulcers and other gastrointestinal disorders involving hyperacidity and hypermotility. Chemically, it contains a quaternary ammonium group. It is most often provided as an iodide salt, but is also available as a bromide or chloride salt. It was discovered at Janssen Pharmaceutica in 1954.

Organoiodine compounds are organic compounds that contain one or more carbon–iodine bonds. They occur widely in organic chemistry, but are relatively rare in nature. The thyroxine hormones are organoiodine compounds that are required for health and the reason for government-mandated iodization of salt.

Candocuronium iodide chemical compound

Candocuronium iodide is an aminosteroid neuromuscular-blocking drug or skeletal muscle relaxant in the category of non-depolarizing neuromuscular-blocking drugs. Its potential adjunctive use in anesthesia to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation was briefly evaluated in clinical studies in India, but further development discontinued because of attendant cardiovascular effects, primarily tachycardia that was no worse than but also not an improvement over the clinically established pancuronium bromide. Candocuronium demonstrated a short duration and a rapid onset of action, with little or no ganglion blocking activity, and it was only slightly less potent than pancuronium.

References

  1. Scolari G (September 1979). "[Use of a mouthwash with a base of tibezonium iodide in gingival inflammation and in the inhibition and dissolution of dental plaque]". Rivista Italiana di Stomatologia. 48 (9): 29–37. PMID   298008.