Transport Phenomena (book)

Last updated
Transport Phenomena
AuthorBird, R.B., Stewart, W.E. and Lightfoot, E.N.
LanguageEnglish
Subjecttransport phenomena
PublisherJohn Wiley & Sons
Publication date
1960 (First Edition)
Media typeHardback
Pages780
ISBN 0-471-07392-X
OCLC 964824

Transport Phenomena is the first textbook about transport phenomena. It is specifically designed for chemical engineering students. The first edition was published in 1960, two years after having been preliminarily published under the title Notes on Transport Phenomena based on mimeographed notes prepared for a chemical engineering course taught at the University of Wisconsin–Madison during the academic year 1957-1958. [1] [2] The second edition was published in August 2001. [3] A revised second edition was published in 2007. [4] This text is often known simply as BSL after its authors' initials. [5]

Contents

History

As the chemical engineering profession developed in the first half of the 20th century, the concept of "unit operations" arose as being needed in the education of undergraduate chemical engineers. The theories of mass, momentum and energy transfer were being taught at that time only to the extent necessary for a narrow range of applications. As chemical engineers began moving into a number of new areas, problem definitions and solutions required a deeper knowledge of the fundamentals of transport phenomena than those provided in the textbooks then available on unit operations.

In the 1950s, R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot stepped forward to develop an undergraduate course at the University of Wisconsin–Madison to integrate the teaching of fluid flow, heat transfer, and diffusion. From this beginning, they prepared their landmark textbook Transport Phenomena. [6] [7]

Subjects covered in the book

The book is divided into three basic sections, named Momentum Transport, Energy Transport and Mass Transport:

Word play

Transport Phenomena contains many instances of hidden messages and other word play. For example, the first letters of each sentence of the Preface spell out "This book is dedicated to O. A. Hougen." while in the revised second edition, the first letters of each paragraph spell out "Welcome". The first letters of each paragraph in the Postface spell out "On Wisconsin". In the first printing, in Fig. 9.L (p. 305) "Bird" is typeset safely outside the furnace wall.

Advantages of the first edition over the second edition

According to many chemical engineering professors, the first edition is much better than the second edition. There are many reasons in this regard; The second edition has been revised many times despite the fact that there are still many defects and typographical errors in many parts of the book. On account of revision to defects of the revised second edition book, the authors published "Notes for the 2nd revised edition of TRANSPORT PHENOMENA" on 9 Aug 2011. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical engineering</span> Engineering discipline focused on the operation and design of chemical plants

Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions.

<span class="mw-page-title-main">Molecular diffusion</span> Thermal motion of liquid or gas particles at temperatures above absolute zero

Molecular diffusion, often simply called diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.

<span class="mw-page-title-main">Fluid dynamics</span> Aspects of fluid mechanics involving flow

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

<span class="mw-page-title-main">Laminar flow</span> Flow where fluid particles follow smooth paths in layers

Laminar flow is the property of fluid particles in fluid dynamics to follow smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another smoothly. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.

Mass transfer is the net movement of mass from one location to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m−1·K−1.

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

<span class="mw-page-title-main">Porous medium</span> Material containing fluid-filled voids

In materials science, a porous medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" or "frame". The pores are typically filled with a fluid. The skeletal material is usually a solid, but structures like foams are often also usefully analyzed using concept of porous media.

Thermofluids is a branch of science and engineering encompassing four intersecting fields:

In fluid dynamics, the Schmidt number of a fluid is a dimensionless number defined as the ratio of momentum diffusivity and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).

<span class="mw-page-title-main">Eddy (fluid dynamics)</span> Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

<span class="mw-page-title-main">Multiphase flow</span> Simultaneous flow of materials with two or more thermodynamic phases

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square meter, or pascal-seconds.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

Edwin Niblock Lightfoot, Jr. was an American chemical engineer and Hilldale Professor Emeritus in the department of chemical and biological engineering at the University of Wisconsin-Madison. He is known for his research in transport phenomena, including biological mass-transfer processes, mass-transport reaction modeling, and separations processes. He, along with R. Byron Bird and Warren E. Stewart, co-authored the classic textbook Transport Phenomena. In 1974 Lightfoot wrote Transport Phenomena and Living Systems: Biomedical Aspects of Momentum and Mass Transport. He was the recipient of the 2004 National Medal of Science in Engineering Sciences.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

<span class="mw-page-title-main">Bubble column reactor</span>

A bubble column reactor is a chemical reactor that belongs to the general class of multiphase reactors, which consists of three main categories: trickle bed reactor, fluidized bed reactor, and bubble column reactor. A bubble column reactor is a very simple device consisting of a vertical vessel filled with water with a gas distributor at the inlet. Due to the ease of design and operation, which does not involve moving parts, they are widely used in the chemical, biochemical, petrochemical, and pharmaceutical industries to generate and control gas-liquid chemical reactions.

Particle-laden flows refers to a class of two-phase fluid flow, in which one of the phases is continuously connected and the other phase is made up of small, immiscible, and typically dilute particles. Fine aerosol particles in air is an example of a particle-laden flow; the aerosols are the dispersed phase, and the air is the carrier phase.

Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.

A laminar flow reactor (LFR) is a type of chemical reactor that uses laminar flow to control reaction rate, and/or reaction distribution. LFR is generally a long tube with constant diameter that is kept at constant temperature. Reactants are injected at one end and products are collected and monitored at the other. Laminar flow reactors are often used to study an isolated elementary reaction or multi-step reaction mechanism.

References

  1. This Week's Citation Classic (University of Pennsylvania, Garfield Library)
  2. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1958). Notes on transport phenomena. John Wiley & Sons. LCCN   58010796. OCLC   5123255.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (August 2001). Transport Phenomena (Second ed.). John Wiley & Sons. ISBN   0-471-41077-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2007). Transport Phenomena (Revised Second ed.). John Wiley & Sons. ISBN   978-0-470-11539-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Bird, Stewart, Lightfoot Programs Archived 2004-05-17 at archive.today
  6. Bird, Stewart, Lightfoot Programs Archived 2004-05-17 at archive.today
  7. Transport Phenomena: A Landmark in Chemical Engineering Education Archived 2015-09-09 at the Wayback Machine
  8. Notes for the 2nd revised edition of TRANSPORT PHENOMENA