Transport Phenomena (book)

Last updated
Transport Phenomena
AuthorBird, R.B., Stewart, W.E. and Lightfoot, E.N.
LanguageEnglish
Subjecttransport phenomena
PublisherJohn Wiley & Sons
Publication date
1960 (First Edition)
Media typeHardback
Pages780
ISBN 0-471-07392-X
OCLC 964824

Transport Phenomena is the first textbook about transport phenomena. It is specifically designed for chemical engineering students. The first edition was published in 1960, two years after having been preliminarily published under the title Notes on Transport Phenomena based on mimeographed notes prepared for a chemical engineering course taught at the University of Wisconsin–Madison during the academic year 1957-1958. [1] [2] The second edition was published in August 2001. [3] A revised second edition was published in 2007. [4] This text is often known simply as BSL after its authors' initials. [5]

Contents

History

As the chemical engineering profession developed in the first half of the 20th century, the concept of "unit operations" arose as being needed in the education of undergraduate chemical engineers. The theories of mass, momentum and energy transfer were being taught at that time only to the extent necessary for a narrow range of applications. As chemical engineers began moving into a number of new areas, problem definitions and solutions required a deeper knowledge of the fundamentals of transport phenomena than those provided in the textbooks then available on unit operations.

In the 1950s, R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot stepped forward to develop an undergraduate course at the University of Wisconsin–Madison to integrate the teaching of fluid flow, heat transfer, and diffusion. From this beginning, they prepared their landmark textbook Transport Phenomena. [6] [7]

Subjects covered in the book

The book is divided into three basic sections, named Momentum Transport, Energy Transport and Mass Transport:

Word play

Transport Phenomena contains many instances of hidden messages and other word play. For example, the first letters of each sentence of the Preface spell out "This book is dedicated to O. A. Hougen." while in the revised second edition, the first letters of each paragraph spell out "Welcome". The first letters of each paragraph in the Postface spell out "On Wisconsin". In the first printing, in Fig. 9.L (p. 305) "Bird" is typeset safely outside the furnace wall.

Advantages of the first edition over the second edition

According to many chemical engineering professors, the first edition is much better than the second edition. There are many reasons in this regard; The second edition has been revised many times despite the fact that there are still many defects and typographical errors in many parts of the book. On account of revision to defects of the revised second edition book, the authors published "Notes for the 2nd revised edition of TRANSPORT PHENOMENA" on 9 Aug 2011. [8]

See also

Related Research Articles

Chemical engineering Branch of engineering

Chemical engineering is a certain type of engineering which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw material into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions.

Molecular diffusion The thermal motion of liquid or gas particles at temperatures above absolute zero

Molecular diffusion, often simply called diffusion, is the thermal motion of all particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles. Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the distribution of molecules is uniform. Since the molecules are still in motion, but an equilibrium has been established, the end result of molecular diffusion is called a "dynamic equilibrium". In a phase with uniform temperature, absent external net forces acting on the particles, the diffusion process will eventually result in complete mixing.

Fluid dynamics Aspects of fluid mechanics involving flow

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Laminar flow Flow where fluid particles follow smooth paths in layers

In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.

Mass transfer is the net movement of mass from one location, usually meaning stream, phase, fraction or component, to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or .

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

Boundary layer

In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The liquid or gas in the boundary layer tends to cling to the surface.

Thermofluids is a branch of science and engineering encompassing four intersecting fields:

Thermal hydraulics is the study of hydraulic flow in thermal fluids. The area can be mainly divided into three parts: thermodynamics, fluid mechanics, and heat transfer, but they are often closely linked to each other. A common example is steam generation in power plants and the associated energy transfer to mechanical motion and the change of states of the water while undergoing this process. Thermal-hydraulic analysis can determine important parameters for reactor design such as plant efficiency and coolability of the system.

Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum diffusivity and mass diffusivity, and is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after the German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).

Multiphase flow

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena.

In fluid mechanics, a shell balance can be used to determine how fluid velocity changes across a flow.

The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.

Reynolds number Dimensionless quantity used to help predict fluid flow patterns

The Reynolds number helps predict flow patterns in different fluid flow situations. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. Reynolds numbers are an important dimensionless quantity in fluid mechanics.

Edwin Niblock Lightfoot Jr. was an American chemical engineer and Hilldale Professor Emeritus in the Department of Chemical and Biological Engineering at the University of Wisconsin-Madison. He is known for his research in transport phenomena, including biological mass-transfer processes, mass-transport reaction modeling, and separations processes. He, along with R. Byron Bird and Warren E. Stewart, co-authored the classic textbook Transport Phenomena. In 1974 Lightfoot wrote Transport Phenomena and Living Systems: Biomedical Aspects of Momentum and Mass Transport. Lightfoot was the recipient of the 2004 National Medal of Science in Engineering Sciences.

In engineering, physics and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

Particle-laden flows refers to a class of two-phase fluid flow, in which one of the phases is continuously connected and the other phase is made up of small, immiscible, and typically dilute particles. Fine aerosol particles in air is an example of a particle-laden flow; the aerosols are the dispersed phase, and the air is the carrier phase.

Combustion models for CFD refers to combustion models for computational fluid dynamics. Combustion is defined as a chemical reaction in which a hydrocarbon fuel reacts with an oxidant to form products, accompanied with the release of energy in the form of heat. Being the integral part of various engineering applications like: internal combustion engines, aircraft engines, rocket engines, furnaces, and power station combustors, combustion manifests itself as a wide domain during the design, analysis and performance characteristics stages of the above-mentioned applications. With the added complexity of chemical kinetics and achieving reacting flow mixture environment, proper modeling physics has to be incorporated during computational fluid dynamic (CFD) simulations of combustion. Hence the following discussion presents a general outline of the various adequate models incorporated with the Computational fluid dynamic code to model the process of combustion.

Flow distribution in manifolds

The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of the following types: dividing, combining, Z-type and U-type manifolds. A key question is the uniformity of the flow distribution and pressure drop.

References

  1. This Week's Citation Classic (University of Pennsylvania, Garfield Library)
  2. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1958). Notes on transport phenomena. John Wiley & Sons. LCCN   58010796. OCLC   5123255.CS1 maint: multiple names: authors list (link)
  3. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (August 2001). Transport Phenomena (Second ed.). John Wiley & Sons. ISBN   0-471-41077-2.CS1 maint: multiple names: authors list (link)
  4. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2007). Transport Phenomena (Revised Second ed.). John Wiley & Sons. ISBN   978-0-470-11539-8.CS1 maint: multiple names: authors list (link)
  5. Bird, Stewart, Lightfoot Programs Archived 2004-05-17 at archive.today
  6. Bird, Stewart, Lightfoot Programs Archived 2004-05-17 at archive.today
  7. Transport Phenomena: A Landmark in Chemical Engineering Education Archived 2015-09-09 at the Wayback Machine
  8. Notes for the 2nd revised edition of TRANSPORT PHENOMENA