Geodesy |
---|
The United States National Grid (USNG) is a multi-purpose location system of grid references used in the United States. It provides a nationally consistent "language of location", optimized for local applications, in a compact, user friendly format. It is similar in design to the national grid reference systems used in other countries. The USNG was adopted as a national standard by the Federal Geographic Data Committee (FGDC) of the US Government in 2001.
While latitude and longitude are well suited to describing locations over large areas of the Earth's surface, most practical land navigation situations occur within much smaller, local areas. As such, they are often better served by a local Cartesian coordinate system, in which the coordinates represent actual distance units on the ground, using the same units of measurement from two perpendicular coordinate axes. [1] [2] [3] This can improve human comprehension by providing reference of scale, as well as making actual distance computations more efficient. [4]
Paper maps often are published with overlaid rectangular (as opposed to latitude/longitude) grids to provide a reference to identify locations. However, these grids, if non-standard or proprietary (such as so-called "bingo" grids with references such as "B-4"), are typically not interoperable with each other, nor can they usually be used with GPS.
The goal of the USNG is to provide a uniform, nationally consistent rectangular grid system that is interoperable across maps at different scales, as well as with GPS and other location based systems. It is intended to provide a frame of reference for describing and communicating locations that is easier to use than latitude/longitude for many practical applications, works across jurisdictional boundaries, and is simple to learn, teach, and use. It is also designed to be both flexible and scalable so that location references are as compact and concise as possible.
The USNG is intended to supplement—not to replace—other location systems such as street addresses. It can be applied to printed maps and to computer mapping and other (GIS) applications. It has found increasing acceptance especially in emergency management, search and rescue, and other public safety applications; yet, its utility is by no means limited to those fields.
The USNG is an alpha-numeric reference system that overlays the UTM coordinate system. A number of brief tutorial references explain the system in detail, with examples. [5] [6] [7] [8] [9] [10] . Briefly, an example of a full USNG spatial address (grid reference) is:
18S UJ 23371 06519
(This example used by the FGDC is the full one-meter grid reference of the Jefferson Pier in Washington DC.) [10]
This full form (15 characters) uniquely identifies a single one-meter grid square out of the entire surface of the earth. It consists of three parts (each of which follows a "read-right-then-up" paradigm familiar with other "X,Y" coordinates):
In addition to truncating references (on the right) when less precision is required, another powerful feature of USNG is the ability to omit (on the left) the Grid Zone Designation, and possibly even the 100 km Square Identification, when one or both of these are unambiguously understood; that is, when operating within a known regional or local area. For example:
Thus in practical usage, USNG references are typically very succinct and compact, making them convenient (and less error prone) for communication.
Rectangular, distance-based (Cartesian) coordinate systems have long been recognized for their practical utility for land measurement and geolocation over local areas. In the United States, the Public Land Survey System (PLSS), created in 1785 in order to survey land newly ceded to the nation, introduced a rectangular coordinate system to improve on the earlier metes-and-bounds survey basis used earlier in the original colonies. In the first half of the 20th century, State Plane Coordinate Systems (SPCS) brought the simplicity and convenience of Cartesian coordinates to state-level areas, providing high accuracy (low distortion) survey-grade coordinates for use primarily by state and local governments. (Both of these planar systems remain in use today for specialized purposes.)
Internationally, during the period between World Wars I and II, several European nations mapped their territory with national-scale grid systems optimized for the geography of each country, such as the Ordnance Survey National Grid (British National Grid). Near the end of World War II, the Universal Transverse Mercator (UTM) coordinate system extended this grid concept around the globe, dividing it into 60 zones of 6 degrees longitude each. Circa 1949, the US further refined UTM for ease of use (and combined it with the Universal Polar Stereographic system covering polar areas) to create the Military Grid Reference System (MGRS), which remains the geocoordinate standard used across the militaries of NATO counties.
In the 1990s, a US grass-roots citizen effort led to the Public X-Y Mapping Project, [12] [13] a not-for-profit organization created specifically to promote the acceptance of a national grid for the United States. [14] [15] The Public XY Mapping Project developed the idea, conducting informal tests and surveys to determine which coordinate reference system best met the requirements of national consistency and ease of human use. Based on its findings, a standard based on the MGRS was adopted and brought to the Federal Geographic Data Committee (FGDC) in 1998. [16] After an iterative review process and public comment period, the USNG was adopted by the FGDC as standard FGDC-STD-011-2001 in December 2001. [14]
Since then, the USNG has seen gradual but steadily increasing adoption both in formal standards and in practical use and applications, in public safety and in other fields.
Users encountering the USNG (or similar grid reference systems) sometimes question why they are used instead of latitude and longitude coordinates, with which they may be more familiar. Proponents note that, in contrast to latitude and longitude coordinates, the USNG provides: [1] [2] [3] [4] [17]
This format ambiguity has led to confusion with potentially serious consequences, particularly in emergency situations. [18] [19]
All of the above also lead to USNG references being typically very succinct and compact, with flexibility to convey precise location information in a short sequence of characters that is easily relayed in writing or by voice.
As with any projection that seeks to represent the curved Earth as a flat surface, distortions and tradeoffs will inevitably occur. The USNG attempts to balance and minimize these, consistent with making the grid as useful as possible for its intended purpose of efficiently communicating practical locations. Since the UTM (the basis for USNG) is not a single projection, but rather a set of 6-degree longitudinal zones, there will necessarily be a local discontinuity along each of the 'seam' meridians between zones. However, every point continues to have a well-defined, unique geoaddress, and there are established conventions to minimize confusion near zone intersections. [20] [21] The six-degree zone width of UTM strikes a balance between the frequency of these discontinuities versus distortion of scale, which would increase unacceptably if the zones were made wider. (UTM further uses a 0.9996 scale factor at the central meridian, growing to 1.0000 at two meridians offset from the center, and increasing toward the zone boundaries, so as to minimize the overall effect of scale distortion across the zone breadth.) The USNG is not intended for surveying, for which a higher-precision (lower-distortion) coordinate system such as SPCS would be more appropriate. [14] Also, since USNG north-south grid lines are (by design) a fixed distance from the zone central meridian, only the central meridian itself will be aligned with "true north". Other grid lines establish a local "grid north", which will differ from true north by a small amount. The amount of this deviation, which is indicated on USGS topographic maps, is typically much less than the magnetic declination (between true north and magnetic north), and is small enough that it can be disregarded in most land navigation situations.
Since its adoption as a national standard in 2001, the USNG has itself been incorporated into standards and operating procedures of other organizations:
"POLICY STATEMENT: FEMA will use the United States National Grid (USNG) as its standard geographic reference system for land-based operations and will encourage use of the USNG among whole community partners."
The utility of almost every large or medium scale map (paper or electronic) can be greatly enhanced by having an overlaid coordinate grid. The USNG provides such a grid that is universal, interoperable, non-proprietary, works across all jurisdictions, and can readily be used with GPS receivers and other location service applications.
In addition to providing a convenient means to identify and communicate specific locations (points and areas), an overlaid USNG grid also provides an orientation, and—because it is distance based—a scale of distance that is present across the map.
USGS topographic maps have for decades been published with 1000-meter UTM tick marks in the map collar, and sometimes with full grid lines across the map. Recent editions of these maps (those referenced to the North American datum of 1983, or NAD83) are compatible with USNG, and current editions also contain a standard USNG information box in the collar which identifies the GZD(s) (Grid Zone Designator(s) and the 100 km Grid Square ID(s) covering the area of the particular map. USNG can now be found on various pre-printed and custom-printed maps available for purchase, or generated from various mapping software packages.
A growing number of software applications incorporate or refer to the US National Grid. See the External Links section below for links to some of these, including The National Map (USGS). These applications include conventional mapping applications with overlaid USNG grid and/or coordinate readouts, and several 'you-are-here' mobile applications which give the user's current USNG coordinates, such as USNGapp.org and FindMeSAR.com.
Mission Manager, the most widely used incident management software tool for first responders, integrates the USNG in its functionality. [27] [28]
As noted above under Standards, since 2011 the USNG has been designated by the US Government's National Search and Rescue Committee (NSARC) as the primary coordinate reference system to be used for all land-based search and rescue (SAR) activities in the US. [22] (Latitude and longitude [DMM variant] may be used as the secondary system for land responders; especially when coordinating with air and sea based responders who may use it as their primary system, and USNG as secondary.)
The National Association for Search and Rescue (NASAR) is moving its education and certification testing programming towards USNG. [29] [30] [31] Other organizations such as the National Alliance for Public Safety GIS (NAPSG) also provide USNG SAR training. [32]
FEMA Urban Search and Rescue (USAR) task forces including Florida Task Force 4 (FL-TF4) [33] and Iowa Task Force 1 (IA-TF1) [34] have incorporated the USNG into their training and operations.
Responders are often faced with significant geolocation issues when a responding to an emergency without a street address. This is particularly true in the recreational trail environment:
In response to these issues, in 2009, a project funded by the nonprofit SharedGeo and University of Minnesota/Minnesota Department of Transportation Local Operational Research Assistance (OPERA) grant program got underway which had the following objectives:
After three years of field research and vetting by multiple focus groups of trail users, responders, and geospatial experts, a design based on USNG was adopted.
This format, which can be used anywhere in the United States, was originally offered in three sizes to conform to federal, state and local signage standards:
In the years since introduction, the USNG ELM program now includes vertical ELM versions for breakaway scenarios (e.g. mountain bike trails), ELM information signs, ELM stickers to retrofit trail posts, and corresponding apps such as USNGapp.org.
USNG ELM implementations can be found in Minnesota, [35] [36] [37] [38] [39] Florida, [40] [41] Georgia, [42] [43] [44] [45] Hawaii, [46] [47] Michigan, [48] and other states.
The USNG can increase the effectiveness of all types of emergency response, ranging from missing persons searches to off-road medical responses. In Lake County MN, with 900 miles of recreational trails, dispatchers and first responders have been provided the tools and training to use USNG as their primary means of geo-location. The goal of this education for responders and the public is to "Take the 'Search' out of 'Search and Rescue.'"
In addition to ELM signs, notices at trailheads encourage hikers and off-road vehicle operators to "Download this USNG App" on their cell phones. Trail maps including USNG grid lines allow responders to interpolate locations from 911 callers who give their coordinates from ELMs or GPS apps. Cell phones also provide responders the opportunity to counsel lost or injured persons to determine their location by downloading USNG apps on the spot. This saves time and effort for responders and patients alike who are not on roads or addressed locations. When multiple teams of responders are working in close vicinity, such as during woods searches for lost individuals, communicating with USNG allows them to truncate their coordinate string to eight digits, giving their location within 10 meters without the use of decimals, special symbols or unit descriptors, and intuitively estimate the distance and direction between teams for better coordination.
Emergency managers coordinate response to and recovery from all types of natural hazards and man-made threats. In large scale events, where responders may be imported from many jurisdictions, coordination of geo-location formats is mandatory. The USNG is used to reduce confusion and improve efficiency in response to wildfires, floods and hurricanes and other events.
As noted above, In 2015, the Federal Emergency Management Agency (FEMA) issued FEMA Directive 092–5, "Use of the United States National Grid (USNG)": [23]
"POLICY STATEMENT: FEMA will use the United States National Grid (USNG) as its standard geographic reference system for land-based operations and will encourage use of the USNG among whole community partners."
"Lessons learned from several large-scale disasters within the past three decades highlight the need for a common, geographic reference system in order to anticipate resource requirements, facilitate decision-making, and accurately deploy resources. ... Decision support tools that apply the USNG enable emergency managers to locate positions and identify areas of interest or operations where traditional references (i.e., landmarks or street signs) may be destroyed, damaged, or missing due to the effects of a disaster."
The USNG is also seen as a tool for enhancing situational awareness and facilitating a common operating picture in emergency scenarios. [57] [58] [59] [60] [61] [62]
The Department of Defense also has recognized the role of the civil USNG standard for the Armed Forces in support of homeland security and homeland defense. [63]
Organizations such as public utilities, transportation departments, emergency responders, and others own or rely upon fixed, field-based assets which they need to track, inventory, maintain, and locate efficiently when needed. Examples include fire hydrants, overhead utility poles, storm drains, roadside signs, and many others.
Assigning unique identifiers is a common method for identifying and referencing particular assets. A strategically assigned asset identifier can include location information, thereby assuring both that the name is unique and that the location of the asset is always known. [64] The USNG offers a method to locate any place or any object in the world with a brief alphanumeric code, which can be shortened depending on the known service area, and enhanced with a prefix code to identify the type of asset. Organizations have successfully fielded this type of USNG-based asset naming recently:
"The Mohawk Valley Water Authority serves 40,000 customers in the Greater Utica Area in Central New York. We have 700+ miles of pipe, 28 storage tanks, 21 pump stations, and numerous fire hydrants. We communicate hydrant status information internally and with many fire departments. We need to name these items meaningfully. We have tried several naming conventions—both sequential and hierarchical—with confusing and disappointing results. We converted to USNG asset naming and have used this successfully for over 4 years!" -- Elisabetta T. DeGeronimo, Watershed/GIS Coordinator at Mohawk Valley Water Authority, Utica, New York [65]
--
"Hundreds of thousands of roadside assets—culverts, drains, signs on ground mounts, signs on overhead support structures, signs on span wires, and guide rails—are found along the routes maintained by the New York State Department of Transportation. In the past, the existence of these assets was only recorded in construction plans and the minds and memories of dedicated career staff. Our new asset naming convention, based upon the U.S. National Grid, benefits the entire department and particularly the field forces." -- Mary Susan Knauss, Senior Transportation Analyst, Office of Transportation Management, New York State Department of Transportation, Albany, New York [66]
These and other contributors at Florida State University and elsewhere have collaborated to produce a manual to guide GIS users and others through the practical steps of naming assets using the USNG. [64]
There has been a concerted outreach to educate the public in the uses and advantages of USNG. Sharing USNG maps and apps with friends and families encourages them to keep each other informed of their locations when traveling off-road (i.e., in wilderness or on the water) for work or recreation. [67] In addition, USNG can be used to mark and communicate locations in busy or remote urban areas, including where to meet friends in a wooded park, locating a car in a mall parking lot, or requesting help inside a large warehouse or business complex. One doesn't even need compass directions.
The USNG has seen steady but gradually increasing adoption and use since the standard was approved in 2001. Formal adoption by other standards bodies has taken place, while practical adoption in actual use has been more uneven in achieving its full potential. In 2018, the USNG Institute (UGNGI) was established "to study and report on USNG implementation efforts taking place across the United States" [69] , as was a USNG Implementation Working Group (USNG IWG) to help assist and coordinate implementation efforts.
Further adoption of USNG for public safety and the Emergency Location Marker (ELM) system may depend in part on greater coordination of USNG adoption at Public Safety Answering Points (PSAPs, or 911 centers), in their procedures and Computer-Aided-Dispatch (CAD) systems. Currently such implementations, being generally under local control, have been more fragmented than some national adoption initiatives.
Proponents of the USNG envision many other ways in which it could play roles in improving safety, convenience, and quality of life.
The geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.
A projected coordinate system – also called a projected coordinate reference system, planar coordinate system, or grid reference system – is a type of spatial reference system that represents locations on Earth using Cartesian coordinates (x, y) on a planar surface created by a particular map projection. Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. Hundreds of projected coordinate systems have been specified for various purposes in various regions.
The Ordnance Survey National Grid reference system (OSGB) is a system of geographic grid references used in Great Britain, distinct from latitude and longitude.
A geocode is a code that represents a geographic entity. It is a unique identifier of the entity, to distinguish it from others in a finite set of geographic entities. In general the geocode is a human-readable and short identifier.
The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the Universal Transverse Mercator. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.
A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.
The Irish grid reference system is a system of geographic grid references used for paper mapping in Ireland. The Irish grid partially overlaps the British grid, and uses a similar co-ordinate system but with a meridian more suited to its westerly location.
Linear referencing, also called linear reference system or linear referencing system (LRS), is a method of spatial referencing in engineering and construction, in which the locations of physical features along a linear element are described in terms of measurements from a fixed point, such as a milestone along a road. Each feature is located by either a point or a line. If a segment of the linear element or route is changed, only those locations on the changed segment need to be updated. Linear referencing is suitable for management of data related to linear features like roads, railways, oil and gas transmission pipelines, power and data transmission lines, and rivers.
The Military Grid Reference System (MGRS) is the geocoordinate standard used by NATO militaries for locating points on Earth. The MGRS is derived from the Universal Transverse Mercator (UTM) grid system and the Universal Polar Stereographic (UPS) grid system, but uses a different labeling convention. The MGRS is used as geocode for the entire Earth.
The Swiss coordinate system is a geographic coordinate system used in Switzerland and Liechtenstein for maps and surveying by the Swiss Federal Office of Topography (Swisstopo).
Address geocoding, or simply geocoding, is the process of taking a text-based description of a location, such as an address or the name of a place, and returning geographic coordinates, frequently latitude/longitude pair, to identify a location on the Earth's surface. Reverse geocoding, on the other hand, converts geographic coordinates to a description of a location, usually the name of a place or an addressable location. Geocoding relies on a computer representation of address points, the street / road network, together with postal and administrative boundaries.
ED50 is a geodetic datum which was defined after World War II for the international connection of geodetic networks.
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.
A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems. It is one of seven projections introduced by Johann Heinrich Lambert in his 1772 publication Anmerkungen und Zusätze zur Entwerfung der Land- und Himmelscharten.
A spatial reference system (SRS) or coordinate reference system (CRS) is a framework used to precisely measure locations on the surface of Earth as coordinates. It is thus the application of the abstract mathematics of coordinate systems and analytic geometry to geographic space. A particular SRS specification comprises a choice of Earth ellipsoid, horizontal datum, map projection, origin point, and unit of measure. Thousands of coordinate systems have been specified for use around the world or in specific regions and for various purposes, necessitating transformations between different SRS.
Geohash is a public domain geocode system invented in 2008 by Gustavo Niemeyer which encodes a geographic location into a short string of letters and digits. Similar ideas were introduced by G.M. Morton in 1966. It is a hierarchical spatial data structure which subdivides space into buckets of grid shape, which is one of the many applications of what is known as a Z-order curve, and generally space-filling curves.
The geo URI scheme is a Uniform Resource Identifier (URI) scheme defined by the Internet Engineering Task Force's RFC 5870 as:
a Uniform Resource Identifier (URI) for geographic locations using the 'geo' scheme name. A 'geo' URI identifies a physical location in a two- or three-dimensional coordinate reference system in a compact, simple, human-readable, and protocol-independent way.
A position representation is a set of parameters used to express a position relative to a reference. When representing positions relative to the Earth, it is often most convenient to represent vertical position separately, and to use some other parameters to represent horizontal position. There are also several applications where only the horizontal position is of interest, this might e.g. be the case for ships and ground vehicles/cars. It is a type of geographic coordinate system.
A discrete global grid (DGG) is a mosaic that covers the entire Earth's surface. Mathematically it is a space partitioning: it consists of a set of non-empty regions that form a partition of the Earth's surface. In a usual grid-modeling strategy, to simplify position calculations, each region is represented by a point, abstracting the grid as a set of region-points. Each region or region-point in the grid is called a cell.
The Open Location Code (OLC) is a geocode based in a system of regular grids for identifying an area anywhere on the Earth. It was developed at Google's Zürich engineering office, and released late October 2014. Location codes created by the OLC system are referred to as "plus codes".
When you are measuring to drill a hole in your kitchen floor, you are not likely to use latitude and longitude to refer to its location. Instead you would use a local measurement system based on distances from your kitchen walls. Likewise, many ground navigation situations are better served with a local measurement system.
...for land navigation--usually limited to a relatively small area--the UTM grid is just the thing because it divides the territory into neat little squares, making pinpointing your position a snap. The lat/long grid, on the other hand, is more cumbersome because those pesky, converging longitude lines make plotting your position more cumbersome.
...the civilian sector is beginning to realize what the military has known since World War I: for land navigation, the geographic coordinate system using latitude and longitude is not well-suited for referencing locations. ... The geographic [latitude/longitude] coordinate system is essential for referencing large areas of the Earth, but for small areas, it has serious drawbacks - it uses angular units (degrees, minutes and seconds), which are cumbersome when expressing distance or converting coordinate values between map scales, and the spacing of latitude and longitude varies across the Earth, resulting in complicated calculations. USNG avoids these problems.
Latitude and longitude are appropriate for referencing a single location in relation to the rest of the earth, but for referencing numerous locations in relation to each other, within a relatively small area, latitude and longitude becomes very cumbersome.
{{cite web}}
: CS1 maint: multiple names: authors list (link)The UTM [here essentially equivalent to USNG] Grid System...['s] greatest advantage over the Geographic Coordinate System (latitude/longitude) is its reliability, because its measurements are cited in linear...units, rather than in angular...ones. Most people find meters easier to visualize than fractions of degrees, and consequently, are less likely to make mistakes.
Baltimore had provided the coordinates as raw numbers, without specifying that they were in...degrees, minutes and seconds: 38 52 17, -76 52 26. ... Prince George's [County] dispatchers and others mapped the coordinates differently, rendering them as decimal degrees...: 38.5217, -76.5226. Viewed that way, the numbers plotted to the coastline in Calvert County, 40 miles southeast of where Trooper 2 last was flying -- and searchers from several agencies tracked over Calvert in one of the night's misguided hunts.
It had to do with...the coordinates being in a different format.
NASAR is moving our navigation education and testing towards USNG.
We're hopeful that this becomes a model for other National Parks to use.