Victory Bomber

Last updated

Wind tunnel model of the Victory Bomber at the Brooklands Museum BrooklandsVictoryBomber.jpg
Wind tunnel model of the Victory Bomber at the Brooklands Museum

The British "Victory Bomber" was a Second World War design proposal by British inventor and aircraft designer Barnes Wallis while at Vickers-Armstrongs for a large strategic bomber. This aircraft was to have performed what Wallis referred to as "anti-civil engineering" bombing missions and was to have carried his projected 22,000 lb (10,000 kg) "earthquake bomb" to strategic targets in Germany. The Victory Bomber was considered extremely ambitious: the Royal Air Force (RAF) at that time not yet having introduced four-engine heavy bombers, and to give the necessary performance, the Victory Bomber was to have six engines and was highly specialised to its role.

Contents

The project was studied in detail, the bomber proceeding to wind tunnel testing while the earthquake bomb to equip it was tested on representative models. The Air Ministry chose not to proceed with development of the Victory Bomber, terminating it in May 1941. No prototypes were built, but the Avro Lancaster filled a similar role and was fitted with a similar armament array. The Lancaster used Wallis' Tallboy, Grand Slam and bouncing bomb during strategic "anti-civil engineering" missions, such as Operation Chastise, the "Dambusters" mission.

Background

During the early stages of the Second World War, Wallis performed extensive studies of the German war economy and industry, concluding that with the selective destruction of strategic infrastructure targets, the German capacity to produce armaments could be reduced. Wallis believed that a fundamental means to ending the war would be to send bombing missions against German power sources and that the destruction of facilities such as coal mines, oil depots, hydroelectric dams and water supplies would leave Germany without a functional war industry and therefore having no ability to wage war. [1] [2]

Wallis also spent a considerable amount of time studying the physics involved in high explosives and various bombs. As a result of these studies, Wallis conceived of more effective means to use explosives; that the shock wave that was created when munitions such as depth charges were detonated was more damaging than the initial blast of the detonation itself; he also viewed conventional bombing methods as practised by RAF Bomber Command to be insufficient on these terms to attack dispersed industrial areas. [1] On this basis, he sought to apply this principle to a new type of weapon that would detonate underground. [1] In 1940, Wallis designed a 22,400 lb (10,200 kg) "penetrating" bomb that was to bury itself in the ground before detonating. Designed with a sharp, pointed nose, the bomb could be dropped from a high altitude of 40,000 ft (12,000 m) and would plunge around 135 ft (41 m) underground; the explosion would cause a miniature concentrated 'earthquake' with a destructive radius for 29 acres. [3] It was estimated that this bomb could be capable of breaking dams such as the Möhne if it were to explode while in the reservoirs within 150 ft (46 m) of the dam's face. [4]

Wallis argued that roughly 4,000 acres (16 km2) could be thoroughly destroyed by five aircraft each deploying only a single such bomb; this would allow for far greater levels of destruction by RAF Bomber Command as it required substantially fewer bombers to create the same levels of damage as via contemporary means. Only a small number of such equipped bombers was reasoned to be able to devastate Germany's industrial capacity to a greater extent than mass waves of conventionally-armed bombers. [5] Wallis allegedly said that "irreparable damage could be inflicted on the strategic communications of the German Empire by ... ten or twenty machines within the course of a few weeks". [2] However, the deployment of Wallis' concept was not immediately possible, for there was no existing Royal Air Force (RAF) bomber that would be capable of carrying such a weapon.

The limitation of the purpose of the Victory Bomber to only a single bomb and mission did not endear it to the Air Ministry, who required more flexibility of their aircraft. [4] In mid 1940, a principle had been established that the manufacturing of only five types of aircraft should be pursued – two of these being fighter aircraft and three being bombers; Wallis' vision for a six-engine bomber equipped for only a specialised bomb conflicted with this concept. However, Lord Beaverbrook committed support for the project, co-operation from both the Ministry of Aircraft Production and the Road Research Laboratory would be forthcoming to aid Wallis in developing his plans. [6] [7] In August 1940, the Aeronautical Research Committee permitted the use of a wind tunnel at the National Physical Laboratory in Teddington to perform tests to develop the penetration bomb. [8]

In May 1941, the Air Staff rejected both the Victory Bomber and the bomb, observing that the aircraft was unlikely to be completed before the war ended. [4] The thinly-stretched resources for bombers were being mostly allocated to the already-ambitious introduction of multiple four-engine bomber projects. Aviation author Paul Brickhill notes of the decision: "It was a fair assumption that it might be disastrous to dislocate [four-engine bombers] in favour of the Victory Bomber, which would inevitably take much longer to develop." [9] However, Wallis's concepts had drawn attention within the establishment and his concepts continued to be explored, in particular the value of attacking infrastructure such as dams was being recognised, and the concept for the weapon did not meet its demise in the May 1941 decision. [8] [10]

The bomber design is not believed to have been developed beyond construction of a large wooden wind tunnel model which survives today at Brooklands Museum. However, the earthquake bomb idea was continued, initially as the smaller 12,000 lb (5,400 kg) Tallboy bomb, and then the larger 22,000 lb (10,000 kg) Grand Slam bomb, the carrying aircraft being a modified Avro Lancaster, whose performance had improved during the war to the point where it could manage such a load. There was further design work on large high flying bombers by the British during the war, including 75 ton (68 tonne) and 100 ton (90 tonne) design proposals, but these did not progress either. [11] The Bristol design work for a 100-ton bomber did have some influence on the Bristol Brabazon.

Design (as planned)

In response to the absence of a suitable aircraft, Wallis revived an earlier concept for a large six-engine bomber, known initially as the 'High Altitude Stratosphere Bomber' and later simply as the 'Victory Bomber'. [12] The Victory Bomber had its origins in an earlier concept that the RAF had previously rejected prior to the war, having not even introduced four-engine bombers at the time, there had been some political support from figures such as Lord Beaverbrook, who had been appointed as the Minister of Aircraft Production in May 1940. [13] In July 1940, Wallis was summoned to meet with Beaverbrook, and was able to briefly present the Victory Bomber concept to him, who in turn referred it for further study. [14] On 1 November 1940, Sir Charles Craven, Vickers' Managing Director, wrote to Lord Beaverbrook to suggest that he give backing to both the bomb and the Victory Bomber. [15]

Wallis' design for the huge six-engined Victory Bomber drew upon his prior experience and expertise. Wallis was an expert on geodetic airframe construction, having previously used it in designs such as the Wellesley (1935) and Wellington (1936), and naturally used it again for the Victory Bomber; also, all existing Vickers tooling was for this construction method. His specification was for a 50-ton (45 tonne) bomber that could fly at high altitude, 45,000 ft (14,000 m) being calculated to give the bomb maximum impact speed, at a speed of 320 mph (280 kn; 510 km/h) over a distance of 4,000 mi (3,500 nmi; 6,400 km). [16] It would carry a single 22,400 lb (10,200 kg) "earthquake bomb". Defensive armament was minimal; speed and height would be its chief defence with one quad-gun turret in the tail position for any fighter aircraft that did attempt to reach it. The bomber would benefit by climbing to altitude while over Britain, where fighter defences could protect it. Due to the high altitudes that bombing missions would take place at, the crew compartment was pressurised. [13]

Bombing from high altitudes posed several issues, principally amongst these being accuracy. Wallis himself acknowledged that the accuracy called for to employ the penetration bomb from 40,000 ft (12,000 m) was difficult to achieve; [3] specifically, there was an assumption that around 25 percent of days throughout the year would be suitable for performing bombing missions in, but that during such missions the benefits of being undisturbed from ground-based anti-aircraft fire would lead to equivalent accuracy to conventional bombers flying at 15,000–20,000 ft (4,600–6,100 m) under gunfire. [17] In response to these difficulties, Wallis had proposed the adoption of a new gyroscopic bombsight to provide for greater accuracy. [2] The Victory Bomber was to have been capable of traversing substantial ranges, being able to launch bombing missions upon Moscow in Russia from airfields around London in the United Kingdom; Wallis also promoted the aircraft as being the potential basis for post-war civil aircraft capable of performing direct transatlantic crossings. [18]

Specifications (as planned)

General characteristics

Performance

Armament

See also

Related Research Articles

de Havilland Mosquito British multi-role combat aircraft of WW2

The de Havilland DH.98 Mosquito is a British twin-engined, multirole combat aircraft, introduced during the Second World War. Unusual in that its airframe was constructed mostly of wood, it was nicknamed the "Wooden Wonder", or "Mossie". Lord Beaverbrook, Minister of Aircraft Production, nicknamed it "Freeman's Folly", alluding to Air Chief Marshal Sir Wilfrid Freeman, who defended Geoffrey de Havilland and his design concept against orders to scrap the project. In 1941, it was one of the fastest operational aircraft in the world.

<span class="mw-page-title-main">Bristol Blenheim</span> British light bomber in World War II

The Bristol Blenheim is a British light bomber designed and built by the Bristol Aeroplane Company, which was used extensively in the first two years of the Second World War, with examples still being used as trainers until the end of the war. Development began with the Type 142, a civil airliner, after a challenge from the newspaper proprietor Lord Rothermere to produce the fastest commercial aircraft in Europe. The Type 142 first flew in April 1935, and the Air Ministry, ordered a modified design as the Type 142M for the Royal Air Force (RAF) as a bomber.

<span class="mw-page-title-main">Vickers Wellington</span> British twin-engined, long-range medium bomber

The Vickers Wellington is a British twin-engined, long-range medium bomber. It was designed during the mid-1930s at Brooklands in Weybridge, Surrey. Led by Vickers-Armstrongs' chief designer Rex Pierson, a key feature of the aircraft is its geodetic airframe fuselage structure, which was principally designed by Barnes Wallis. Development had been started in response to Air Ministry Specification B.9/32, issued in the middle of 1932, for a bomber for the Royal Air Force.

<span class="mw-page-title-main">Short Stirling</span> British four-engined heavy bomber of the Second World War

The Short Stirling was a British four-engined heavy bomber of the Second World War. It has the distinction of being the first four-engined bomber to be introduced into service with the Royal Air Force (RAF) during the war.

<span class="mw-page-title-main">Avro Lancaster</span> World War II British heavy bomber aircraft

The Avro Lancaster is a British Second World War heavy bomber. It was designed and manufactured by Avro as a contemporary of the Handley Page Halifax, both bombers having been developed to the same specification, as well as the Short Stirling, all three aircraft being four-engined heavy bombers adopted by the Royal Air Force (RAF) during the same era.

<span class="mw-page-title-main">Westland Welkin</span> Type of aircraft

The Westland Welkin was a British twin-engine heavy fighter from the Westland Aircraft Company, designed to fight at extremely high altitudes, in the stratosphere; the word welkin meaning "the vault of heaven" or the upper atmosphere. First conceived in 1940, the plane was built in response to the arrival of modified Junkers Ju 86P bombers flying reconnaissance missions, which suggested the Luftwaffe might attempt to re-open the bombing of England from high altitude. Construction was from 1942 to 1943. The threat never materialised; consequently, Westland produced only a small number of Welkins and few of these flew.

<span class="mw-page-title-main">Barnes Wallis</span> English engineer and inventor (1887–1979)

Sir Barnes Neville Wallis was an English engineer and inventor. He is best known for inventing the bouncing bomb used by the Royal Air Force in Operation Chastise to attack the dams of the Ruhr Valley during World War II.

<span class="mw-page-title-main">Operation Chastise</span> 1943 attack on German dams by Royal Air Force

Operation Chastise, commonly known as the Dambusters Raid, was an attack on German dams carried out on the night of 16/17 May 1943 by 617 Squadron RAF Bomber Command, later called the Dam Busters, using special "bouncing bombs" developed by Barnes Wallis. The Möhne and Edersee dams were breached, causing catastrophic flooding of the Ruhr valley and of villages in the Eder valley; the Sorpe Dam sustained only minor damage. Two hydroelectric power stations were destroyed and several more damaged. Factories and mines were also damaged and destroyed. An estimated 1,600 civilians – about 600 Germans and 1,000 enslaved labourers, mainly Soviet – were killed by the flooding. Despite rapid repairs by the Germans, production did not return to normal until September. The RAF lost 56 aircrew, with 53 dead and 3 captured, amid losses of 8 aircraft.

<span class="mw-page-title-main">Heavy bomber</span> Bomber aircraft of the largest size and load carrying capacity

Heavy bombers are bomber aircraft capable of delivering the largest payload of air-to-ground weaponry and longest range of their era. Archetypal heavy bombers have therefore usually been among the largest and most powerful military aircraft at any point in time. In the second half of the 20th century, heavy bombers were largely superseded by strategic bombers, which were often even larger in size, had much longer ranges and were capable of delivering nuclear bombs.

<span class="mw-page-title-main">Avro Manchester</span> British twin-engine heavy bomber

The Avro 679 Manchester was a British twin-engine heavy bomber developed and manufactured by the Avro aircraft company in the United Kingdom. While not being built in great numbers, it was the forerunner of the more famed and more successful four-engined Avro Lancaster, which was one of the most capable strategic bombers of the Second World War.

<span class="mw-page-title-main">Handley Page Victor</span> British strategic bomber and tanker aircraft

The Handley Page Victor is a British jet-powered strategic bomber developed and produced by Handley Page during the Cold War. It was the third and final V bomber to be operated by the Royal Air Force (RAF), the other two being the Vickers Valiant and the Avro Vulcan. Entering service in 1958, the Victor was initially developed as part of the United Kingdom's airborne nuclear deterrent, but it was retired from the nuclear mission in 1968, following the discovery of fatigue cracks which had been exacerbated by the RAF's adoption of a low-altitude flight profile to avoid interception, and due to the pending introduction of the Royal Navy's submarine-launched Polaris missiles in 1969.

<span class="mw-page-title-main">Vickers Wellesley</span> British single-engined medium bomber

The Vickers Wellesley was a medium bomber that was designed and produced by the British aircraft manufacturer Vickers-Armstrongs at Brooklands near Weybridge, Surrey. It was one of two aircraft to be named after Arthur Wellesley, 1st Duke of Wellington, the other being the Vickers Wellington.

<span class="mw-page-title-main">Vickers Warwick</span> British multi-purpose twin-engined military aircraft of the Second World War

The Vickers Warwick was a British twin-engined bomber aircraft developed and operated during the Second World War that was primarily used in other roles. In line with the naming convention followed by other RAF heavy bombers of the era, it was named after a British city or town, in this case Warwick. The Warwick was the largest British twin-engined aircraft to see use during the Second World War.

<span class="mw-page-title-main">Tallboy (bomb)</span> Type of earthquake bomb

Tallboy or Bomb, Medium Capacity, 12,000 lb was an earthquake bomb developed by the British aeronautical engineer Barnes Wallis and used by the Royal Air Force (RAF) during the Second World War.

<span class="mw-page-title-main">Boulton Paul Overstrand</span> 1933 medium bomber aircraft

The Boulton Paul P.75 Overstrand was a twin-engine biplane medium bomber designed and produced by the British aircraft manufacturer Boulton Paul. It was the final example of a series of biplane medium bombers that had served in the Royal Air Force since the First World War, starting with the likes of the Vickers Vimy and Handley Page Type O. The Overstrand was also the first aircraft to be fitted with a fully-enclosed power-operated turret.

<span class="mw-page-title-main">Vickers Windsor</span> British four-engine heavy bomber, 1943

The Vickers Windsor was a Second World War British four-engine heavy bomber, intended for high altitude flight. The Windsor was designed by Barnes Wallis and Rex Pierson at the Vickers-Armstrongs factory at Brooklands.

<span class="mw-page-title-main">Vickers Vernon</span> Type of aircraft

The Vickers Vernon was a British biplane troop carrier used by the Royal Air Force. It entered service in 1921 and was the first dedicated troop transport of the RAF.

<span class="mw-page-title-main">Vickers Type 432</span> British high-altitude fighter aircraft

The Vickers Type 432 was a British high-altitude fighter aircraft developed by the Vickers group during the Second World War. Intended to enable the Royal Air Force to engage the enemy's high-altitude bomber aircraft, it was to be armed with six cannons.

<span class="mw-page-title-main">Fairey Gordon</span> British light bomber and utility plane of the interwar era

The Fairey Gordon was a British light bomber and utility aircraft of the 1930s.

The earthquake bomb, or seismic bomb, was a concept that was invented by the British aeronautical engineer Barnes Wallis early in World War II and subsequently developed and used during the war against strategic targets in Europe. A seismic bomb differs somewhat in concept from a traditional bomb, which usually explodes at or near the surface and destroys its target directly by explosive force; in contrast, a seismic bomb is dropped from high altitude to attain very high speed as it falls and upon impact, penetrates and explodes deep underground, causing massive caverns or craters known as camouflets, as well as intense shockwaves. In this way, the seismic bomb can affect targets that are too massive to be affected by a conventional bomb, as well as damage or destroy difficult targets such as bridges and viaducts.

References

Citations

  1. 1 2 3 Holland 2013, p. 83.
  2. 1 2 3 Edgerton 2011, p. 237.
  3. 1 2 Holland 2013, p. 86.
  4. 1 2 3 Levine 1992, p. 54.
  5. Holland 2013, pp. 86–87.
  6. Holland 2013, p. 88.
  7. Brickhill 2009, p. 19.
  8. 1 2 Holland 2013, p. 90.
  9. Brickhill 2009, p. 13.
  10. Edgerton 2011, p. 238.
  11. Buttler 2004
  12. Jablonski 1971, p. 136.
  13. 1 2 Holland 2013, p. 87.
  14. Brickhill 2009, pp. 14–16.
  15. Brickhill 2009, p. 16.
  16. Sweetman 1982, p. 17.
  17. Sweetman 1982, p. 18.
  18. Edgerton 2011, pp. 237–238.

Bibliography

  • Andrews, Charles F. Vickers Aircraft Since 1908. London, UK: Putnam Ltd, 1960.
  • Buttler, Tony. Secret Projects: British Fighters and Bombers 1935 -1950 (British Secret Projects 3). Leicester, UK: Midland Publishing, 2004. ISBN   1-85780-179-2.
  • Brickhill, Paul. The Dam Busters. Pan Macmillan, 2009 [Originally published: London: Evans, 1951]. ISBN   0-3305-0995-0.
  • Edgerton, David. Britain's War Machine: Weapons, Resources, and Experts in the Second World War. Oxford University Press, 2011. ISBN   0-1999-1150-9.
  • Holland, James. Dam Busters: The Race to Smash the Dams, 1943. Random House, 2013. ISBN   0-5521-6341-4.
  • Jablonski, Edward. Tragic Victories. Doubleday, 1971.
  • Levine, Alan J. The Strategic Bombing of Germany, 1940–1945. Westport, Connecticut: Greenwood Publishing Group, 1992. ISBN   0-275-94319-4.
  • Sweetman, John. Operation Chastise: The Dams Raid: Epic or Myth. Jane's, 1982. ISBN   0-7106-0124-7.