Violacein

Last updated

Contents

Violacein
Violacein.svg
Names
IUPAC name
(3E)-3-[5-(5-Hydroxy-1H-indol-3-yl)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one
Other names
3-(2-(5-Hydroxyindol-3-yl)-5-oxo-2-pyrrolin-4-ylidene)-2-indolinone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C20H13N3O3/c24-10-5-6-15-12(7-10)14(9-21-15)17-8-13(19(25)23-17)18-11-3-1-2-4-16(11)22-20(18)26/h1-9,21,23-25H
    Key: SHLJIZCPRXXHHZ-UHFFFAOYSA-N
  • C1=CC=C2C(=C1)/C(=C\3/C=C(NC3=O)C4=CNC5=C4C=C(C=C5)O)/C(=O)N2
Properties
C20H13N3O3
Molar mass 343.342 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Violacein is a naturally-occurring bis-indole pigment with antibiotic (anti-bacterial, anti-viral, anti-fungal and anti-tumor) properties. [1] [2] [3] [4] Violacein is produced by several species of bacteria, including Chromobacterium violaceum , and gives these organisms their striking purple hues. Violacein shows increasing commercially interesting uses, especially for industrial applications in cosmetics, medicines and fabrics.

Biosynthesis

Violacein is formed by enzymatic condensation of two tryptophan molecules, requiring the action of five proteins. The genes required for its production, vioABCDE, and the regulatory mechanisms employed haves been studied within a small number of violacein-producing strains. [2] Production of violacein is controlled by quorum sensing using acyl-homoserine lactones (AHLs). [5]

Only a few genera of bacteria have been reported to produce violacein. These include Chromobacterium, Duganella , Pseudoalteromonas , [6] Janthinobacterium , [7] Iodobacter, Rugamonas , [8] and Massilia [5] . [9]

Antibiotic activity

Violacein is known to have diverse biological activities, including as a cytotoxic anticancer agent and antibacterial action against Staphylococcus aureus and other gram-positive pathogens. [1] [3] [10] [11] Determining the biological roles of this pigmented molecule has been of particular interest to researchers, and understanding violacein's function and mechanism of action is relevant to potential applications. Commercial production of violacein and related compounds has proven difficult so improving fermentative yields of violacein is being pursued through genetic engineering and synthetic biology. [2]

Related Research Articles

<span class="mw-page-title-main">Aztreonam</span> Chemical compound

Aztreonam, sold under the brand name Azactam among others, is an antibiotic used primarily to treat infections caused by gram-negative bacteria such as Pseudomonas aeruginosa. This may include bone infections, endometritis, intra abdominal infections, pneumonia, urinary tract infections, and sepsis. It is given by intravenous or intramuscular injection or by inhalation.

<span class="mw-page-title-main">Astaxanthin</span> Chemical compound

Astaxanthin is a keto-carotenoid within a group of chemical compounds known as carotenones or terpenes. Astaxanthin is a metabolite of zeaxanthin and canthaxanthin, containing both hydroxyl and ketone functional groups.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">Burkholderiales</span> Order of bacteria

The Burkholderiales are an order of Betaproteobacteria in the phylum Pseudomonadota. Like all Pseudomonadota, they are Gram-negative. They include several pathogenic bacteria, including species of Burkholderia, Bordetella, and Ralstonia. They also include Oxalobacter and related genera, which are unusual in using oxalic acid as their source of carbon. Other well-studied genera include Alcaligenes, Cupriavidus, Achromobacter, Comamonas, Delftia, Massilia, Duganella, Janthinobacterium, Polynucleobacter, non-pathogenic Paraburkholderia, Caballeronia, Polaromonas, Thiomonas, Collimonas, Hydrogenophaga, Sphaerotilus, Variovorax, Acidovorax, Rubrivivax and Rhodoferax, and Herbaspirillum.

<span class="mw-page-title-main">Antimicrobial peptides</span> Class of peptides that have antimicrobial activity

Antimicrobial peptides (AMPs), also called host defence peptides (HDPs) are part of the innate immune response found among all classes of life. Fundamental differences exist between prokaryotic and eukaryotic cells that may represent targets for antimicrobial peptides. These peptides are potent, broad spectrum antimicrobials which demonstrate potential as novel therapeutic agents. Antimicrobial peptides have been demonstrated to kill Gram negative and Gram positive bacteria, enveloped viruses, fungi and even transformed or cancerous cells. Unlike the majority of conventional antibiotics it appears that antimicrobial peptides frequently destabilize biological membranes, can form transmembrane channels, and may also have the ability to enhance immunity by functioning as immunomodulators.

<i>Paenibacillus</i> Genus of bacteria

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae, which causes American foulbrood in honeybees, P. polymyxa, which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, which develop complex colonies with intricate architectures as shown in the pictures:

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, Gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes. P. aeruginosa is able to selectively inhibit various antibiotics from penetrating its outer membrane - and has high resistance to several antibiotics. According to the World Health Organization P. aeruginosa poses one of the greatest threats to humans in terms of antibiotic resistance.

<i>Chromobacterium violaceum</i> Species of bacterium

Chromobacterium violaceum is a Gram-negative, facultative anaerobic, non-sporing coccobacillus. It is motile with the help of a single flagellum which is located at the pole of the coccobacillus. Usually, there are one or two more lateral flagella as well. It is part of the normal flora of water and soil of tropical and sub-tropical regions of the world. It produces a natural antibiotic called violacein, which may be useful for the treatment of colon and other cancers. It grows readily on nutrient agar, producing distinctive smooth low convex colonies with a characteristic striking dark violet metallic sheen. Some strains of the bacteria which do not produce this pigment have also been reported. It has the ability to break down tarballs.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">Extracellular polymeric substance</span> Gluey polymers secreted by microorganisms to form biofilms

Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.

<i>Janthinobacterium lividum</i> Species of bacterium

Janthinobacterium lividum is an aerobic, Gram-negative, soil-dwelling bacterium that has a distinctive dark-violet color, due to a compound called violacein, which is produced when glycerol is metabolized as a carbon source. Violacein has antibacterial, antiviral, and antifungal properties. Its antifungal properties are of particular interest, since J. lividum is found on the skin of certain amphibians, including the red-backed salamander, where it prevents infection by the devastating chytrid fungus.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

<i>Massilia</i> (bacterium) Genus of bacteria

The genus Massilia is an outdated genus name of bacteria within the family Oxalobacteriaceae. All Massilia species were reclassified in 2023 into one of the following genera: Duganella, Pseudoduganella, Janthinobacterium,Telluria,Rugamonas,Mokoshia, or Zemynaea.

<i>Duganella</i> Genus of bacteria

Duganella is a genus of bacteria in the Oxalobacteraceae family.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, sold under the brand name Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, a part of Celgene.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

Dokdonia donghaensis is a strictly aerobic, gram-negative, phototrophic bacterium that thrives in marine environments. The organism can grow at a broad range of temperatures on seawater media. It has the ability to form biofilms, which increases the organism's resistance to antimicrobial agents, such as tetracycline.

<i>Massilia eurypsychrophila</i> Species of bacterium

Massilia eurypsychrophila is a Gram-negative, aerobic, rod-shaped and facultatively psychrophilic bacterium from the genus Massilia with a polar flagella which has been isolated from the ice core of the Muztagh Glacier in Xinjiang in China.

Hymenobacter coccineus is a Gram-negative and rod-shaped bacterium from the genus Hymenobacter which has been isolated from a rock from the James Ross Island in the Antarctica.

Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.

References

  1. 1 2 Durán N, Justo GZ, Durán M, Brocchi M, Cordi L, Tasic L, et al. (2016). "Advances in Chromobacterium violaceum and properties of violacein-Its main secondary metabolite: A review". Biotechnology Advances. 34 (5): 1030–1045. doi:10.1016/j.biotechadv.2016.06.003. hdl: 11336/49517 . PMID   27288924.
  2. 1 2 3 Myeong NR, Seong HJ, Kim HJ, Sul WJ (April 2016). "Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1". Journal of Biotechnology. 223: 36–37. doi:10.1016/j.jbiotec.2016.02.027. PMID   26916415.
  3. 1 2 Choi SY, Yoon KH, Lee JI, Mitchell RJ (2015). "Violacein: Properties and Production of a Versatile Bacterial Pigment". BioMed Research International. 2015: 465056. doi: 10.1155/2015/465056 . PMC   4538413 . PMID   26339614.
  4. Andrighetti-Fröhner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simões CM (September 2003). "Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum". Memórias do Instituto Oswaldo Cruz. 98 (6): 843–848. doi: 10.1590/s0074-02762003000600023 . PMID   14595466.
  5. 1 2 Park H, Park S, Yang YH, Choi KY (September 2021). "Microbial synthesis of violacein pigment and its potential applications". Critical Reviews in Biotechnology. 41 (6): 879–901. doi:10.1080/07388551.2021.1892579. PMID   33730942. S2CID   232304130.
  6. Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, et al. (March 2008). "Isolation and characterization of two groups of novel marine bacteria producing violacein". Marine Biotechnology. 10 (2): 128–132. Bibcode:2008MarBt..10..128Y. doi:10.1007/s10126-007-9046-9. PMID   17968625. S2CID   19143787.
  7. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G (April 2013). "Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov". Antonie van Leeuwenhoek. 103 (4): 763–769. doi:10.1007/s10482-012-9858-0. PMID   23192307. S2CID   17940699.
  8. Sedláček I, Holochová P, Sobotka R, Busse HJ, Švec P, Králová S, et al. (September 2021). Gralnick JA (ed.). "Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov". Microbiology Spectrum. 9 (1): e0045221. doi:10.1128/Spectrum.00452-21. PMC   8552646 . PMID   34378950.
  9. Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. (March 2022). "Characterisation of Waterborne Psychrophilic Massilia Isolates with Violacein Production and Description of Massilia antarctica sp. nov". Microorganisms. 10 (4): 704. doi: 10.3390/microorganisms10040704 . PMC   9028926 . PMID   35456753.
  10. Lichstein HC, Van De Sand VF (July 1946). "The Antibiotic Activity of Violacein, Prodigiosin, and Phthiocol". Journal of Bacteriology. 52 (1): 145–146. doi:10.1128/JB.52.1.145-146.1946. PMC   518152 . PMID   16561146.
  11. Lichstein HC, Van De Sand VF (1945). "Violacein, an Antibiotic Pigment Produced by Chromobacterium violaceum". Journal of Infectious Diseases. 76 (1): 47–51. doi: 10.1093/infdis/76.1.47 . JSTOR   30085685.

Further reading