The Willans engine or central valve engine was a high-speed stationary steam engine used mainly for electricity generation around the start of the 20th century.
Willans' engine was one of the best-known examples of the steeple compound engine. [1] These were double- or triple-expansion compound engines, with the unusual features of single-acting cylinders and a central spindle valve shared between all the cylinders of that spindle. [lower-roman 1] [3] [4] The cylinders are arranged as tandem compounds, with high- and low-pressure cylinders mounted on the same vertical shaft. This vertical arrangement of the steeple compound gives a compact floor layout for an engine of such power.
Willans engines were not the first high-speed engines for electricity generation, but they were soon adopted to become the predominant type in service. [5]
The engines were developed by Peter W. Willans and Mark Robinson at Thames Ditton, primarily for the increasing market in electrical generation. In 1884 they were granted a patent for the central valve principle. [5] [6]
By the 1890s, more of the Willans type were in service for electricity generation than any other type. [5] [7] As with other high-speed steam engines, the need was for a steam engine that ran at sufficiently high speeds to drive dynamos directly and also that had accurate speed regulation under changing load, so as to maintain the correct voltage. Maintaining the correct frequency for AC systems was even more important, but AC systems tended to favour slow-speed engines with large flywheels, rather than the high-speed engines used for DC. [8]
Willans engines were also used for powering textile mills, although as many mills had been built by this date, the longer-established cross-compound Corliss and drop-valve engines are better known in this application. The Willans engine, its low inertia and accurate speed control made it highly suitable for mill work. The constant shaft speed it delivered, even under a varying load, was considered to improve spinning quality and reduced the number of ends broken by shock loads. [9] [10]
Willans engines were used for powering the Admiralty's anti-torpedo boats. [11] It was reported that the boats were fast, the engines noiseless. [12]
The Willans engine was single-acting; steam pressure was only applied to the upper surface of the pistons. This was a common feature of high-speed engines at this time, in a measure to reduce knocking and increased wear, thus permitting higher operating speeds. [3] The principle was that in a single-acting engine the forces on the connecting rod and its bearings always act to compress the rod, rather than reversing direction twice in every revolution, as for the double-acting engine. [13] The lower bearing brasses, which carried a load only during starting, were smaller than the crankpin and the main working brasses above. Although single-acting engines produce only half the power of an equivalent double-acting engine, or else must run at twice their speed, this reduced knocking could allow them to run more than twice as fast.
In the conventional double-acting engine, residual steam was trapped in the exhausting cylinder after the valve closed and compressed. This compressed steam has a cushioning effect and acts to brake the piston at the end of stroke. [lower-roman 2] In the single-acting engine there is no similar effect at the end of the power stroke. This had previously been a limitation on the operating speed of single-acting engines.
In the Willans engine, cushioning at the end of stroke was provided by an additional air cylinder below the others. The air piston also acted as a trunk guide. During the upward stroke, inertia of the engine continues its movement upwards and before the next stroke begins there is otherwise nothing to retard it. The enclosed air cylinder acts as a compressed air dashpot above the trunk guide piston. [14]
The most distinctive feature of the engine was its central spindle valve. This acted as a multi-stage piston valve, controlling admission of steam into each of the compound cylinders. Unusually the valve worked within the hollow piston rod or trunk, rather than in the cylinder block or valvechest. This hollow piston rod linked all of the cylinders and was machined with ports. [15]
The valvegear actuating the valve was very simple. Each piston had two parallel connecting rods, working on separated crankpin journals between the same crank webs. An eccentric between the two crankpins drove the centrally-mounted valve spindle by another short connecting rod. Because of the need to allow the valve rod to pass through between them, the piston had two overhung stub gudgeon pins, rather than a single through pin. [15]
Inlet steam was supplied to the top of the piston rod trunk through distinctive domed caps. If the engine was intended for a fixed cutoff, the inlet steam was controlled solely by the valve and trunk. Where variable cutoff was to be used, this was achieved very simply by a rotating collar with angled ports that overlapped the ports in the trunk and so controlled their timing. [16]
Lubrication of the Willans engine was by splash from an enclosed crankcase. This was filled with a mixture of oil and water. [16] Excess water from condensate was drained out of the crankcase as it accumulated, but the engines did not have the separated glands between the cylinder and crankcase, with a drainage space between them, that were used by the Carel, Belliss and Morcom, or Alley & MacLellan (later Sentinel) engines. [17]
Willans engines gradually fell from use post-World War I, for two reasons.
Firstly, Belliss and Morcom further developed the high-speed engine. Their invention in 1890 of the oil pump and forced lubrication system solved the problem of the bearing rattling under a reversing load. [18] [19] This allowed them to produce double-acting engines that were more compact than single-acting. Where a single cylinder engine could replace a small twin cylinder engine, this was also a useful cost saving. Although some steam generating sets remained in use well into the 1980s, [lower-roman 3] these were almost all of the Belliss and Morcom double-acting type.
Secondly, the growth of electricity generation and the development of the National Grid favoured fewer, larger generating stations, rather than the small local stations of the first generation. These large plants could more efficiently use large steam turbines and could afford the complicated high-superheat water-tube boilers used with them.
The Carel engine, built by SA des Moteurs á Grand Vitesse. Brevet Carel's of Sclessin-Liège, Belgium, was very similar to the Willans. [20] It used a similar layout of paired cylinders, in numbers from two to eight. It too was built for double- and triple-expansion. Like the Willans engine it used single-acting cylinders and also used the Willans air-cushion trunk guide. It differed in the design of its valves, as these were rotary. Each pair of cylinders had a shared rotary valve between them, driven by a half-speed bevel gear. Like the Paget locomotive, the valves were of cast-iron and ran in a phosphor bronze sleeve within the cylinder. [21] As the valve and cylinders must operate in phase, [lower-roman 4] the ports are duplicated. The advantage overall is a reduction in linear valve speed. Such rotary valves were often tried at this period, yet rarely successfully. Lubrication was difficult at this time and superheating was limited, if the valves were not to seize. [20] [lower-roman 5]
The 'Peache Patent' engine was produced by Davey, Paxman & Co of Colchester, who built 260 of them between 1895 and 1913. [22] James Courthope Peache had previously worked for Willans & Robinson as Works Manager at the Ferry Works. He left Willans in January 1892 and in 1893 he approached James Paxman with his own design of a high-speed single-acting engine. He later returned to Willans, in 1904 becoming a Director of the company, now based in Rugby, and by 1908 became Managing Director. [22]
The Peache engine was considered as another single-acting tandem compound, although it had an unusual design of cylinder. The middle volume of the high- and low-pressure cylinders was in common, without the usual gland to isolate them. [22] The high-pressure piston acts downwards and the low-pressure acts upwards. The space between the pistons, referred to as the 'controlling cylinder' is partially filled with steam tapped from the high-pressure cylinder. As this is compressed when the pistons move upwards, it acts in a similar manner to the air-cushion of the Willans. [13]
Piston valves behind the cylinders were worked by a form of radial valvegear, driven by the connecting rod. [22]
Unusually for a steam engine, but somewhat advantageously for a single-acting engine, the Peache was a desaxe engine. By slightly offsetting the crankshaft and piston axis, the crosshead forces remained towards the rear of the engine, throughout the operating cycle. [22] Like the single-acting principle itself, this constant direction of forces helped to reduce vibration and wear. [22]
Few examples of these large electrical generation engines survive, including the Willans. A few of the examples still survive, including a very small one in the Science Museum. This is a 10 kW engine at 450 rpm and is displayed alongside its original bipolar dynamo. A single cylinder from a larger engine is also displayed, sectioned (illus.).
A 1901, 140 bhp three cylinder generating set was retired in 1957 from the Maples furniture shop in London and placed on display at the original Willans factory in Rugby. In 2011 this was recognised with an Engineering Heritage Award. [23] [24] In 2017 it was transferred to the Internal Fire – Museum of Power in West Wales. [25]
A three-cylinder, two-stage engine is preserved in the Science and Tecnic Museum of Catalonia (mNACTEC). [26]
A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-tight by piston rings. In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder. In some engines, the piston also acts as a valve by covering and uncovering ports in the cylinder.
A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the Stirling engine for niche applications. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.
In mechanical engineering, a crosshead is a mechanical joint used as part of the slider-crank linkages of long reciprocating engines and reciprocating compressors to eliminate sideways force on the piston. Also, the crosshead enables the connecting rod to freely move outside the cylinder. Because of the very small bore-to-stroke ratio on such engines, the connecting rod would hit the cylinder walls and block the engine from rotating if the piston was attached directly to the connecting rod like on trunk engines. Therefore, the longitudinal dimension of the crosshead must be matched to the stroke of the engine.
The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing gear. It is sometimes referred to as the "motion".
A connecting rod, also called a 'con rod', is the part of a piston engine which connects the piston to the crankshaft. Together with the crank, the connecting rod converts the reciprocating motion of the piston into the rotation of the crankshaft. The connecting rod is required to transmit the compressive and tensile forces from the piston. In its most common form, in an internal combustion engine, it allows pivoting on the piston end and rotation on the shaft end.
A compound steam engine unit is a type of steam engine where steam is expanded in two or more stages. A typical arrangement for a compound engine is that the steam is first expanded in a high-pressure (HP) cylinder, then having given up heat and losing pressure, it exhausts directly into one or more larger-volume low-pressure (LP) cylinders. Multiple-expansion engines employ additional cylinders, of progressively lower pressure, to extract further energy from the steam.
In a piston engine, a piston rod joins a piston to the crosshead and thus to the connecting rod that drives the crankshaft or the driving wheels.
Engine balance refers to how the inertial forces produced by moving parts in an internal combustion engine or steam engine are neutralised with counterweights and balance shafts, to prevent unpleasant and potentially damaging vibration. The strongest inertial forces occur at crankshaft speed and balance is mandatory, while forces at twice crankshaft speed can become significant in some cases.
The uniflow type of steam engine uses steam that flows in one direction only in each half of the cylinder. Thermal efficiency is increased by having a temperature gradient along the cylinder. Steam always enters at the hot ends of the cylinder and exhausts through ports at the cooler centre. By this means, the relative heating and cooling of the cylinder walls is reduced.
Piston valves are one form of valve used to control the flow of steam within a steam engine or locomotive. They control the admission of steam into the cylinders and its subsequent exhausting, enabling a locomotive to move under its own power. The valve consists of two piston heads on a common spindle moving inside a steam chest, which is essentially a mini-cylinder located either above or below the main cylinders of the locomotive.
A marine steam engine is a steam engine that is used to power a ship or boat. This article deals mainly with marine steam engines of the reciprocating type, which were in use from the inception of the steamboat in the early 19th century to their last years of large-scale manufacture during World War II. Reciprocating steam engines were progressively replaced in marine applications during the 20th century by steam turbines and marine diesel engines.
Musgrave's non-dead-centre engine was a stationary steam engine of unusual design, intended to solve the problem of stopping on dead centre. It was designed in 1887 to serve as a marine engine. It used a pair of linked cylinders to prevent the engine from stopping in a position where no turning force can be applied. At least one engine is known to survive.
Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.
A steam motor is a form of steam engine used for light locomotives and light self-propelled motor cars used on railways. The origins of steam motor cars for railways go back to at least the 1850s, if not earlier, as experimental economizations for railways or railroads with marginal budgets. These first examples, at least in North America, appear to have been fitted with light reciprocating engines, and either direct or geared drives, or geared-endless chain drives. Most incorporated a passenger carrying coach attached to the engine and its boiler. Boiler types varied in these earlier examples, with vertical boilers dominant in the first decade and then with very small diameter horizontal boilers. Other examples of steam motor cars incorporated an express-baggage or luggage type car body, with coupling apparatus provided to allow the steam motor car to draw a light passenger coach.
In mechanical engineering, the cylinders of reciprocating engines are often classified by whether they are single- or double-acting, depending on how the working fluid acts on the piston.
A return connecting rod, return piston rod or double piston rod engine or back-acting engine is a particular layout for a steam engine.
High-speed steam engines were one of the final developments of the stationary steam engine. They ran at a high speed, of several hundred rpm, which was needed by tasks such as electricity generation.
A steeple compound engine is a form of tandem compound steam engine that is constructed as an inverted vertical engine. Because of their great height, they became known as "steeple" engines.
A bash valve is a valve within a piston engine, used to control the admission of the working fluid. They are directly actuated valves, operated by contact between the piston and the valve tip.
An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.