AH-494

Last updated
AH-494
AH-494 structure acs style.png
Identifiers
  • 3‐(1‐ethyl‐1H‐imidazol‐5‐yl)‐1H‐indole‐5‐carboxamide
PubChem CID
ChemSpider
Chemical and physical data
Formula C14H14N4O
Molar mass 254.293 g·mol−1
3D model (JSmol)
  • CCn1cncc1-c1c[nH]c2ccc(cc12)C(N)=O
  • InChI=1S/C14H14N4O/c1-2-18-8-16-7-13(18)11-6-17-12-4-3-9(14(15)19)5-10(11)12/h3-8,17H,2H2,1H3,(H2,15,19)
  • Key:RXDHCCKYQJNUFV-UHFFFAOYSA-N

AH-494 is a potent and selective, water-soluble full agonist at the 5HT7 serotonin receptor. It is a close derivative of the known chemical probe 5-Carboxamidotryptamine, as well as of the more lipophilic indole-imidazoles: AGH-107 and AGH-192. It has been shown to exhibit favorable ADMET profile in in vitro assays. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Eletriptan</span> Chemical compound

Eletriptan, sold under the brand name Relpax and used in the form of eletriptan hydrobromide, is a second-generation triptan medication intended for treatment of migraine headaches. It is used as an abortive medication, blocking a migraine attack which is already in progress. Eletriptan is marketed and manufactured by Pfizer Inc.

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">JWH-015</span> Chemical compound

JWH-015 is a chemical from the naphthoylindole family that acts as a subtype-selective cannabinoid agonist. Its affinity for CB2 receptors is 13.8 nM, while its affinity for CB1 is 383 nM, meaning that it binds almost 28 times more strongly to CB2 than to CB1. However, it still displays some CB1 activity, and in some model systems can be very potent and efficacious at activating CB1 receptors, and therefore it is not as selective as newer drugs such as JWH-133. It has been shown to possess immunomodulatory effects, and CB2 agonists may be useful in the treatment of pain and inflammation. It was discovered and named after John W. Huffman.

<span class="mw-page-title-main">5-Carboxamidotryptamine</span> Chemical compound

5-Carboxamidotryptamine (5-CT) is a tryptamine derivative closely related to the neurotransmitter serotonin.

<span class="mw-page-title-main">EMD-386088</span> Chemical compound

EMD-386088 is an indole derivative which is used in scientific research. It acts as a potent 5-HT6 receptor partial agonist, with a Ki of 1 nM, a significantly higher affinity than older 5-HT6 agonists such as EMDT, although it possesses moderate affinity for the 5-HT3 receptor as well. Subsequent research has determined that EMD-386088 is also a dopamine reuptake inhibitor and that this action is involved in the antidepressant-like effects of the drug in rodents.

<span class="mw-page-title-main">AL-34662</span> Chemical compound

AL-34662 is an indazole derivative drug that is being developed for the treatment of glaucoma. It acts as a selective 5-HT2A receptor agonist, the same target as that of psychedelic drugs like psilocin, but unlike these drugs, AL-34662 was designed specifically as a peripherally selective drug, which does not cross the blood–brain barrier. This means that AL-34662 can exploit a useful side effect of the hallucinogenic 5-HT2A agonists, namely reduction in intra-ocular pressure and hence relief from the symptoms of glaucoma, but without causing the hallucinogenic effects that make centrally active 5-HT2A agonists unsuitable for clinical use. In animal studies, AL-34662 has been shown to be potent and effective in the treatment of symptoms of glaucoma, with minimal side effects.

<span class="mw-page-title-main">AM-694</span> Chemical compound

AM-694 (1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole) is a designer drug that acts as a potent and selective agonist for the cannabinoid receptor CB1. It is used in scientific research for mapping the distribution of CB1 receptors.

<span class="mw-page-title-main">MN-25</span> Chemical compound

MN-25 (UR-12) is a drug invented by Bristol-Myers Squibb, that acts as a reasonably selective agonist of peripheral cannabinoid receptors. It has moderate affinity for CB2 receptors with a Ki of 11 nM, but 22x lower affinity for the psychoactive CB1 receptors with a Ki of 245 nM. The indole 2-methyl derivative has the ratio of affinities reversed however, with a Ki of 8 nM at CB1 and 29 nM at CB2, which contrasts with the usual trend of 2-methyl derivatives having increased selectivity for CB2 (cf. JWH-018 vs JWH-007, JWH-081 vs JWH-098).

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or serotonin analogues, are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">APICA (synthetic cannabinoid drug)</span> Chemical compound

APICA is an indole based drug that acts as a potent agonist for the cannabinoid receptors.

<span class="mw-page-title-main">STS-135 (drug)</span> Chemical compound

STS-135 (N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide, also called 5F-APICA) is a designer drug offered by online vendors as a cannabimimetic agent. The structure of STS-135 appears to use an understanding of structure-activity relationships within the indole class of cannabimimetics, although its design origins are unclear. STS-135 is the terminally-fluorinated analogue of SDB-001, just as AM-2201 is the terminally-fluorinated analogue of JWH-018, and XLR-11 is the terminally-fluorinated analogue of UR-144. STS-135 acts a potent cannabinoid receptor agonist in vitro, with an EC50 of 51 nM for human CB2 receptors, and 13 nM for human CB1 receptors. STS-135 produces bradycardia and hypothermia in rats at doses of 1–10 mg/kg, suggesting cannabinoid-like activity.

<span class="mw-page-title-main">QUCHIC</span> Chemical compound

QUCHIC is a designer drug offered by online vendors as a cannabimimetic agent, and was first detected being sold in synthetic cannabis products in Japan in early 2013, and subsequently also in New Zealand. The structure of QUCHIC appears to use an understanding of structure-activity relationships within the indole class of cannabimimetics, although its design origins are unclear. QUCHIC, along with QUPIC, represents a structurally unique synthetic cannabinoid chemotype since it contains an ester linker at the indole 3-position rather than the precedented ketone of JWH-018 and its analogues, or the amide of SDB-001 and its analogues.

<span class="mw-page-title-main">PNU-181731</span> Chemical compound

PNU-181731 is a drug which acts as an agonist at serotonin 5-HT2 receptors, with strongest binding affinity for the 5-HT2C subtype at 4.8nM, and weaker 5-HT2A affinity of 18nM. It has anxiolytic effects in animal studies with around one tenth the potency of alprazolam and no significant ataxia or other side effects noted.

<span class="mw-page-title-main">PHA-57378</span> Chemical compound

PHA-57378 is a drug which acts as an agonist at serotonin 5-HT2 receptors, having a binding affinity of 4.1 nM at the 5-HT2A subtype and 4.3 nM at 5-HT2C. It has anxiolytic effects in animal studies.

<span class="mw-page-title-main">PX-3</span> Chemical compound

PX-3 (also known as APP-CHMINACA) is an indazole-based synthetic cannabinoid. It is a potent agonist of the CB1 receptor with a binding affinity of Ki = 47.6 nM and was originally developed by Pfizer in 2009 as an analgesic medication.

<span class="mw-page-title-main">NNE1</span> Chemical compound

NNE1 (also known as NNEI, MN-24 and AM-6527) is an indole-based synthetic cannabinoid, representing a molecular hybrid of APICA and JWH-018 that is an agonist for the cannabinoid receptors, with Ki values of 60.09 nM at CB1 and 45.298 nM at CB2 and EC50 values of 9.481 nM at CB1 and 1.008 nM at CB2. It was invented by Abbott and has a CB1 receptor pEC50 of 8.9 with around 80x selectivity over the related CB2 receptor. It is suspected that metabolic hydrolysis of the amide group of NNE1 may release 1-naphthylamine, a known carcinogen, given the known metabolic liberation (and presence as an impurity) of amantadine in the related compound APINACA, and NNE1 was banned in New Zealand in 2012 as a temporary class drug to stop it being used as an ingredient in then-legal synthetic cannabis products. NNE1 was subsequently found to be responsible for the death of a man in Japan in 2014.

<span class="mw-page-title-main">NM-2201</span> Chemical compound

NM-2201 (also known as CBL-2201 and NA-5F-PIC) is an indole-based synthetic cannabinoid that presumably has similar properties to the closely related 5F-PB-22 and NNE1, which are both full agonists and unselectively bind to CB1 and CB2 receptors with low nanomolar affinity.

BzODZ-EPyr is an indole based synthetic cannabinoid that has been sold as a designer drug in Russia.

<span class="mw-page-title-main">AGH-107</span> Chemical compound

AGH-107 is a potent, selective, water-soluble and brain penetrant full agonist at the 5HT7 serotonin receptor. AGH-107 is one of the few examples of low-basicity aminergic receptor agonists, which may underlie its high selectivity over the related central nervous system targets. AGH-107 was found to reverse the impairment in novel object recognition caused by MK-801 in mice. The relatively short half-life in rodents inhibited its use as a molecular probe.

<span class="mw-page-title-main">AGH-192</span> Chemical compound

AGH-192 is a potent and selective, water soluble, orally bioavailable and brain penetrant full agonist at the 5HT7 serotonin receptor, derived from the older drug AGH-107. In animal tests it showed activity indicative of potential application in the treatment of neuropathic pain.

References

  1. Latacz G, Hogendorf AS, Hogendorf A, Lubelska A, Wierońska JM, Woźniak M, Cieślik P, Kieć-Kononowicz K, Handzlik J, Bojarski AJ (September 2018). "Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists". MedChemComm. 9 (11): 1882–1890. doi:10.1039/c8md00313k. PMC   6256855 . PMID   30568756.