Cerebellothalamic tract

Last updated

The cerebellothalamic tract or the tractus cerebellothalamicus, is part of the superior cerebellar peduncle. It originates in the cerebellar nuclei, crosses completely in the decussation of the superior cerebellar peduncle, bypasses the red nucleus, and terminates in posterior division of ventral lateral nucleus of thalamus. The ventrolateral nucleus has different divisions and distinct connections, mostly with frontal and parietal lobes. The primary motor cortex and premotor cortex get information from the ventrolateral nucleus projections originating in the interposed nucleus and dentate nuclei. [1] Other dentate nucleus projections via thalamic pathway transmit information to prefrontal cortex and posterior parietal cortex. [1] The cerebellum sends thalamocortical projections and in addition may also send connections from the thalamus to association areas serving cognitive and affective functions.

Contents

It is mostly separated from the pallidothalamic tracts. [2]

It can play a role in mediating symptoms in hereditary dystonia. [3]

The term "cerebellothalamocortical pathway" is used to indicate termination in the cerebral cortex. [4]

Function

The cerebellothalamic tract transmits information from the cerebellum to the thalamus via neural impulses for the sensory systems.

Motor adaptation is primarily a function of the cerebellothalamic fiber pathway. The cerebellum oversees modification of routine motor programs in response to changes in the environment (e.g. walking uphill versus walking on a flat surface). It is experimentally shown that prolonged motor adaptation, such as walking over a period of weeks while wearing an ankle cast, is accompanied by long-term potentiation of cerebellothalamic synapses, thereby facilitating the influence of the cerebellum on the motor cortex. [5]

Clinical significance

Lesions in cerebrocerebellum, which receives input exclusively from the cerebral cortex and projects its output to premotor and motor cortices, result in impairments in highly skilled sequences of learned movements, for instance, playing a musical instrument. [6]

Lesions may also result in problems with planning movements and ipsilateral incoordination, especially of the upper limb and to faulty phonation and articulation. [5]

Pathological interaction between cerebellothalamic tract and basal ganglia may be the explanation for the resting tremor in Parkinson's disease. [7]

See also

Related Research Articles

Basal ganglia Group of subcortical nuclei involved in the motor and reward systems

The basal ganglia are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an external and internal region, and in the division of the striatum. The basal ganglia are situated at the base of the forebrain and top of the midbrain. Basal ganglia are strongly interconnected with the cerebral cortex, thalamus, and brainstem, as well as several other brain areas. The basal ganglia are associated with a variety of functions, including control of voluntary motor movements, procedural learning, habit learning, eye movements, cognition, and emotion.

Brainstem Posterior part of the brain, adjoining and structurally continuous

The brainstem is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem.

Trigeminal nerve

The trigeminal nerve (the fifth cranial nerve, or simply CN V) is a nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name ("trigeminal" = tri-, or three, and - geminus, or twin: thrice-twinned) derives from the fact that each of the two nerves (one on each side of the pons) has three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is the fact that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

Internal capsule

The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the globus pallidus. The internal capsule contains both ascending and descending axons, going to and coming from the cerebral cortex. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.

Pulvinar nuclei

The pulvinar nuclei or nuclei of the pulvinar are the nuclei located in the thalamus. As a group they make up the collection called the pulvinar of the thalamus, usually just called the pulvinar.

Reticular formation Spinal trigeminal nucleus

The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation make up a complex set of networks in the core of the brainstem that extend from the upper part of the midbrain to the lower part of the medulla oblongata. The reticular formation includes ascending pathways to the cortex in the ascending reticular activating system (ARAS) and descending pathways to the spinal cord via the reticulospinal tracts.

Thalamocortical radiations

Thalamocortical radiations are the fibers between the thalamus and the cerebral cortex.

Dentate nucleus Nucleus in the centre of each cerebellar hemisphere

The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus. The dentate nucleus is responsible for the planning, initiation and control of voluntary movements. The dorsal region of the dentate nucleus contains output channels involved in motor function, which is the movement of skeletal muscle, while the ventral region contains output channels involved in nonmotor function, such as conscious thought and visuospatial function.

The zona incerta (ZI) is a horizontally elongated region of gray matter in the subthalamus below the thalamus. Its connections project extensively over the brain from the cerebral cortex down into the spinal cord.

Intention tremor is a dyskinetic disorder characterized by a broad, coarse, and low frequency tremor evident during deliberate and visually-guided movement. An intention tremor is usually perpendicular to the direction of movement. When experiencing an intention tremor, one often overshoots or undershoots one's target, a condition known as dysmetria. Intention tremor is the result of dysfunction of the cerebellum, particularly on the same side as the tremor in the lateral zone, which controls visually guided movements. Depending on the location of cerebellar damage, these tremors can be either unilateral or bilateral.

Superior cerebellar peduncle

In the human brain, the superior cerebellar peduncle is a paired structure of white matter that connects the cerebellum to the midbrain. It consists mainly of efferent fibers, the cerebellothalamic tract that runs from a cerebellar hemisphere to the contralateral thalamus, and the cerebellorubral tract that runs from a cerebellar hemisphere to the red nucleus. It also contains afferent tracts, most prominent of which is the ventral spinocerebellar tract. Other afferent tracts are the trigeminothalamic fibers, tectocerebellar fibers, and noradrenergic fibers from the locus coeruleus. The superior peduncle emerges from the upper and medial parts of the white matter of each hemisphere and is placed under cover of the upper part of the cerebellum.

The isothalamus is a division used by some researchers in describing the thalamus.

Ventral lateral nucleus

The ventral lateral nucleus (VL) is a nucleus in the ventral nuclear group of the thalamus.

Myoclonic triangle

The myoclonic triangle is an important feedback circuit of the brainstem and deep cerebellar nuclei which is responsible for modulating spinal cord motor activity.

Dentatothalamic tract

The dentatothalamic tract is a tract which originates in the dentate nucleus and follows the ipsilateral superior cerebellar peduncle, decussating later on and reaching the contralateral red nucleus and the contralateral thalamus.

Basal ganglia disease Group of physical problems resulting from basal ganglia dysfunction

Basal ganglia disease is a group of physical problems that occur when the group of nuclei in the brain known as the basal ganglia fail to properly suppress unwanted movements or to properly prime upper motor neuron circuits to initiate motor function. Research indicates that increased output of the basal ganglia inhibits thalamocortical projection neurons. Proper activation or deactivation of these neurons is an integral component for proper movement. If something causes too much basal ganglia output, then the ventral anterior (VA) and ventral lateral (VL) thalamocortical projection neurons become too inhibited, and one cannot initiate voluntary movement. These disorders are known as hypokinetic disorders. However, a disorder leading to abnormally low output of the basal ganglia leads to reduced inhibition, and thus excitation, of the thalamocortical projection neurons which synapse onto the cortex. This situation leads to an inability to suppress unwanted movements. These disorders are known as hyperkinetic disorders.

Anatomy of the cerebellum Structures in the cerebellum, a part of the brain

The anatomy of the cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.

The fields of Forel are areas in a deep part of the brain known as the diencephalon. They are below the thalamus and consist of three defined, white matter areas of the subthalamus. These three regions are also named "H fields":

Medial pulvinar nucleus

Medial pulvinar nucleus is one of four traditionally anatomically distinguished nuclei of the pulvinar of the thalamus. The other three nuclei of the pulvinar are called lateral, inferior and anterior pulvinar nuclei.

References

  1. 1 2 Martin, John H. (2003). Neuroanatomy: text and atlas. Columbia: McGraw-Hill. p. 321. ISBN   0-07-138183-X.
  2. Gallay MN, Jeanmonod D, Liu J, Morel A (August 2008). "Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery". Brain Struct Funct. 212 (6): 443–63. doi:10.1007/s00429-007-0170-0. PMC   2494572 . PMID   18193279.
  3. Argyelan M, Carbon M, Niethammer M, et al. (August 2009). "Cerebellothalamocortical connectivity regulates penetrance in dystonia". J. Neurosci. 29 (31): 9740–7. doi:10.1523/JNEUROSCI.2300-09.2009. PMC   2745646 . PMID   19657027.
  4. Molnar GF, Sailer A, Gunraj CA, Lang AE, Lozano AM, Chen R (September 2004). "Thalamic deep brain stimulation activates the cerebellothalamocortical pathway". Neurology. 63 (5): 907–9. doi:10.1212/01.wnl.0000137419.85535.c7. PMID   15365147.
  5. 1 2 Mtui, Estomih; Gruener, Gregory; Dockery, Peter (2016). Fitzgerald's Clinical Neuroanatomy and Neuroscience (Seventh ed.). Elsevier. pp. 243–252.
  6. Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001). Neuroscience (2nd ed.). Sunderland: Sinauer Associates. ISBN   0-87893-742-0.
  7. Helmich RC, Janssen MJ, Oyen WJ, Bloem BR, Toni I (February 2011). "Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor". Annals of Neurology. 69 (2): 269–281. doi:10.1002/ana.22361. PMID   21387372.