IDA71

Last updated
3 views of a frogman with IDA rebreather IDA71 3 on beach.jpg
3 views of a frogman with IDA rebreather

The Soviet, later Russian IDA71 military and naval rebreather is an oxygen rebreather intended for use by naval and military divers including Russian commando frogmen. As supplied it is in a plain backpack harness with no buoyancy aid. The casing is pressed aluminium with a hinged cover. It has a small optional nitrox cylinder which can be clipped on its outside to convert it to nitrox mode. It contains one oxygen cylinder and two absorbent canisters. In the bottom of its casing is an empty space which is intended for an underwater communications set.

Contents

Here, "up", "back", etc. refer to a man wearing the set standing on land.

The casing is thinner towards the lower end, to reduce drag.

On the front of the harness of the navy frogman version there is a projecting metal plate intended to carry a limpet mine. The front of the harness is a tough rubber "apron".

The loop of each breathing tube can be strapped down to the shoulder to keep it under control to stop it from catching on things or being easily grabbed from behind.

On each side of the casing is a small clip to fasten a parachute to.

The IDA71 rebreather in action Aps protei ida71 00.jpg
The IDA71 rebreather in action

Operating modes

The IDA-71 can be used as an oxygen rebreather, or with the addition of an external cylinder, as a nitrox rebreather, which converts between nitrox and oxygen automatically by a pressure activated valve on the nitrox attachment.

It can run as an ordinary diving rebreather. Or it can be run with one of its two absorbent canisters filled with potassium superoxide, which gives off oxygen as it absorbs carbon dioxide: 4KO2 + 2CO2 = 2K2CO3 + 3O2; in this mode the oxygen cylinder is a bailout, or to fill and flush the circuit at the start of the dive. [1] This mode gives the set more duration underwater, but is dangerous and not to be risked by civilians because of the explosively hot reaction that happens if water gets on the potassium superoxide; whereas ordinary modern diver's rebreather absorbents have been designed to avoid producing a caustic solution (commonly called "cocktail") if they get wet. Tests at the United States Navy Experimental Diving Unit in Panama City, Florida showed that the IDA71 could give significantly longer dive time with superoxide in one of the canisters than without.

For many years the IDA71 and similar have been a standard Russian frogman's and naval work diver's breathing set. The "71" in its name may be the year that it was designed, like with the numbers in the names of the AK series of Russian rifles. The name IDA comes from Russian : Изолирующий дыхательный аппарат (translit.  izoliruyushchiy dykhatel'nyy apparat, literally Insulating/Isolating Breathing Apparatus). Other name is Individual Breathing Apparatus (Russian : Индивидуальний дыхательный аппарат, translit.  Individualniy Dykhatelniy Apparat).

In its original Russian mode as an oxygen rebreather, its dive duration is said to be 4 hours. Filling both canisters with soda lime and putting a second oxygen cylinder in the empty space at the bottom, might increase its dive duration to 8 hours.

A number of IDA71's have found their way out of the ex-USSR to Europe and America, where recreational divers have added a wing buoyancy compensator and converted them into manually controlled closed circuit rebreathers.

Related Research Articles

<span class="mw-page-title-main">Scuba set</span> Self-contained underwater breathing apparatus

A scuba set, originally just scuba, is any breathing apparatus that is entirely carried by an underwater diver and provides the diver with breathing gas at the ambient pressure. Scuba is an anacronym for self-contained underwater breathing apparatus. Although strictly speaking the scuba set is only the diving equipment that is required for providing breathing gas to the diver, general usage includes the harness or rigging by which it is carried, and those accessories which are integral parts of the harness and breathing apparatus assembly, such as a jacket or wing style buoyancy compensator and instruments mounted in a combined housing with the pressure gauge, and in the looser sense, it has been used to refer to all the diving equipment used by the scuba diver, though this would more commonly and accurately be termed scuba equipment or scuba gear. Scuba is overwhelmingly the most common underwater breathing system used by recreational divers and is also used in professional diving when it provides advantages, usually of mobility and range, over surface-supplied diving systems, and is allowed by the relevant legislation and code of practice.

<span class="mw-page-title-main">Rebreather</span> Portable apparatus to recycle breathing gas

A rebreather is a breathing apparatus that absorbs the carbon dioxide of a user's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the user. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, eliminating the bubbles produced by an open circuit system and in turn not scaring wildlife being filmed. A rebreather is generally understood to be a portable unit carried by the user. The same technology on a vehicle or non-mobile installation is more likely to be referred to as a life-support system.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator is a pressure regulator that controls the pressure of breathing gas for diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Full-face diving mask</span> Diving mask that covers the mouth as well as the eyes and nose

A full-face diving mask is a type of diving mask that seals the whole of the diver's face from the water and contains a mouthpiece, demand valve or constant flow gas supply that provides the diver with breathing gas. The full face mask has several functions: it lets the diver see clearly underwater, it provides the diver's face with some protection from cold and polluted water and from stings, such as from jellyfish or coral. It increases breathing security and provides a space for equipment that lets the diver communicate with the surface support team.

<span class="mw-page-title-main">Siebe Gorman CDBA</span> Type of diving rebreather used by the Royal Navy

The Clearance Divers Breathing Apparatus (CDBA) is a type of rebreather made by Siebe Gorman in England.

<span class="mw-page-title-main">Siebe Gorman Salvus</span> Industrial rescue and shallow water oxygen rebreather

The Siebe Gorman Salvus is a light oxygen rebreather for industrial use or in shallow diving. Its duration on a filling is 30 to 40 minutes. It was very common in Britain during World War II and for a long time afterwards. Underwater the Salvus is very compact and can be used where a diver with a bigger breathing set cannot get in, such as inside cockpits of ditched aircraft. It was made by Siebe Gorman & Company, LTD in London, England. It was designed in the early 1900s.

<span class="mw-page-title-main">Dräger (company)</span> German manufacturer of breathing equipment

Dräger is a German company based in Lübeck which makes breathing and protection equipment, gas detection and analysis systems, and noninvasive patient monitoring technologies. Customers include hospitals, fire departments and diving companies.

<span class="mw-page-title-main">Porpoise (scuba gear)</span> Australian scuba manufacturer

Porpoise is a tradename for scuba developed by Ted Eldred in Australia and made there from the late 1940s onwards. The first Porpoise was a closed circuit oxygen rebreather, and the following models were all single hose open circuit regulators.

<span class="mw-page-title-main">Escape breathing apparatus</span> Self contained breathing apparatus providing gas to escape from a hazardous environment

Escape breathing apparatus, also called escape respirators, escape sets, self-rescuer masks, emergency life saving apparatus (ELSA), and emergency escape breathing devices (EEBD), are portable breathing apparatus that provide the wearer with respiratory protection for a limited period, intended for escape from or through an environment where there is no breathable ambient atmosphere. This includes escape through water and in areas containing harmful gases or fumes or other atmospheres immediately dangerous to life or health (IDLH).

<span class="mw-page-title-main">SDBA</span> Special duty oxygen breathing apparatus, a military rebreather.


The SDBA is a type of frogman's rebreather breathing set. Many of the world's navies and army marine corps have used it since 1971.

The Lambertsen Amphibious Respiratory Unit (LARU) is an early model of closed circuit oxygen rebreather used by military frogmen. Christian J. Lambertsen designed a series of them in the US in 1940 and in 1944.

<span class="mw-page-title-main">Scuba gas management</span> Logistical aspects of scuba breathing gas

Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.

<span class="mw-page-title-main">Rebreather diving</span> Underwater diving using self contained breathing gas recycling apparatus

Rebreather diving is underwater diving using diving rebreathers, a class of underwater breathing apparatus which recirculate the breathing gas exhaled by the diver after replacing the oxygen used and removing the carbon dioxide metabolic product. Rebreather diving is practiced by recreational, military and scientific divers in applications where it has advantages over open circuit scuba, and surface supply of breathing gas is impracticable. The main advantages of rebreather diving are extended gas endurance, low noise levels, and lack of bubbles.

<span class="mw-page-title-main">Interspiro DCSC</span> Military semi-closed circuit passive addition diving rebreather

The Interspiro DCSC is a semi-closed circuit nitrox rebreather manufactured by Interspiro of Sweden for military applications. Interspiro was formerly a division of AGA and has been manufacturing self-contained breathing apparatus for diving, firefighting and rescue applications since the 1950s.

<span class="mw-page-title-main">Halcyon PVR-BASC</span> Semi-closed circuit depth compensated passive addition diving rebreather

The Halcyon Passive, Variable Ratio-Biased Addition Semi-Closed rebreather is a unique design of semi-closed rebreather using a depth-compensated passive gas addition system. Passive addition implies that in steady state operation addition of fresh feed gas is a response to low volume of gas in the loop - the gas is injected when the top of the counterlung activates a demand type addition valve, which provides feed gas as long as the diver continues to inhale. The mechanism discharges gas to the environment in proportion to breathing volume to induce this gas feed.

The Halcyon RB80 is a non-depth-compensated passive addition semi-closed circuit rebreather of similar external dimensions to a standard AL80 scuba cylinder. It was originally developed by Reinhard Buchaly (RB) in 1996 for the cave exploration dives conducted by the European Karst Plain Project (EKPP).

<span class="mw-page-title-main">Diving rebreather</span> Closed or semi-closed circuit scuba

A Diving rebreather is an underwater breathing apparatus that absorbs the carbon dioxide of a diver's exhaled breath to permit the rebreathing (recycling) of the substantially unused oxygen content, and unused inert content when present, of each breath. Oxygen is added to replenish the amount metabolised by the diver. This differs from open-circuit breathing apparatus, where the exhaled gas is discharged directly into the environment. The purpose is to extend the breathing endurance of a limited gas supply, and, for covert military use by frogmen or observation of underwater life, to eliminate the bubbles produced by an open circuit system. A diving rebreather is generally understood to be a portable unit carried by the user, and is therefore a type of self-contained underwater breathing apparatus (scuba). A semi-closed rebreather carried by the diver may also be known as a gas extender. The same technology on a submersible or surface installation is more likely to be referred to as a life-support system.

References

  1. Kelley, JS; Herron, JM; Dean, WW; Sundstrom, EB (1968). "Mechanical and Operational Tests of a Russian 'Superoxide' Rebreather". US Navy Experimental Diving Unit Technical Report. NEDU-Evaluation-11-68. Archived from the original on May 9, 2008. Retrieved 2009-01-31.{{cite journal}}: CS1 maint: unfit URL (link)