Built-in breathing system

Last updated
Navy divers testing the built-in breathing masks inside a recompression chamber US Navy 070208-N-8268B-001 Navy Diver 1st class Mike Barnett and Navy Diver 1st Class Chad Christensen test built-in breathing masks inside a recompression chamber.jpg
Navy divers testing the built-in breathing masks inside a recompression chamber

A built-in breathing system is a source of breathing gas installed in a confined space where an alternative to the ambient gas may be required for medical treatment, emergency use, or to minimise a hazard. They are found in diving chambers, hyperbaric treatment chambers, and submarines.

Contents

The use in hyperbaric treatment chambers is usually to supply an oxygen rich treatment gas which if used as the chamber atmosphere, would constitute an unacceptable fire hazard. [1] [2] In this application the exhaust gas is vented outside of the chamber. [1] In saturation diving chambers and surface decompression chamber the application is similar, but a further function is a supply of breathable gas in case of toxic contamination of the chamber atmosphere. [1] This function does not require external venting, but the same equipment is typically used for supply of oxygen enriched gases, so they are generally vented to the exterior.

In submarines the function is to supply a breathable gas in an emergency, which may be contamination of the ambient internal atmosphere, or flooding. In this application venting to the interior is both acceptable and generally the only feasible option, as the exterior is typically at a higher pressure than the interior, and external venting is not possible by passive means.

Function

Side view of BIBS mask supported by straps BIBS mask side view.jpg
Side view of BIBS mask supported by straps

Externally vented BIBS

These are systems used to supply breathing gas on demand in a chamber which is at a pressure greater than the ambient pressure outside the chamber. [1] The pressure difference between chamber and external ambient pressure makes it possible to exhaust the exhaled gas to the external environment, but the flow must be controlled so that only exhaled gas is vented through the system, and it does not drain the contents of the chamber to the outside. This is achieved by using a controlled exhaust valve which opens when a slight over-pressure relative to the chamber pressure on the exhaust diaphragm moves the valve mechanism against a spring. When this over-pressure is dissipated by the gas flowing out through the exhaust hose, the spring returns this valve to the closed position, cutting off further flow, and conserving the chamber atmosphere. A negative or zero pressure difference over the exhaust diaphragm will keep it closed. The exhaust diaphragm is exposed to the chamber pressure on one side, and exhaled gas pressure in the oro-nasal mask on the other side.[ citation needed ] The supply of gas for inhalation is through a demand valve which works on the same principles as a regular diving demand valve second stage. Like any other breathing apparatus, the dead space must be limited to minimise carbon dioxide buildup in the mask.

In some cases the outlet suction must be limited and a back-pressure regulator may be required. This would usually be the case for use in a saturation system. Use for oxygen therapy and surface decompression on oxygen would not generally need a back-pressure regulator. [3] When an externally vented BIBS is used at low chamber pressure, a vacuum assist may be necessary to keep the exhalation backpressure down to provide an acceptable work of breathing. [1]

The oro-nasal mask may be interchangeable for hygienic use by different people. [3]

Some models are rated for pressures up to 450 msw. [4]

The major application for this type of BIBS is supply of breathing gas with a different composition to the chamber atmosphere to occupants of a hyperbaric chamber where the chamber atmosphere is controlled, and contamination by the BIBS gas would be a problem. [1] This is common in therapeutic decompression, and hyperbaric oxygen therapy, where a higher partial pressure of oxygen in the chamber would constitute an unacceptable fire hazard, and would require frequent ventilation of the chamber to keep the partial pressure within acceptable limits Frequent ventilation is noisy and expensive, but can be used in an emergency. [2] It is also necessary that the BIBS gas is not contaminated by chamber gas, as this could adversely affect decompression. [1]

When this format of BIBS is fitted it can also be used for emergency breathing gas supply in the event of contaminated chamber atmosphere, [1] though in those cases the contamination by exhaled BIBS gas would usually not be important.[ citation needed ]

Locally vented BIBS

When contamination of the internal atmosphere is not important, and where the external ambient pressure is higher than in the occupied space, exhaled gas is simply dumped into the internal volume, requiring no special flow control beyond a simple non-return valve. The delivery and exhaust mechanism of a BIBS demand valve for this application is the same as for a scuba or SCBA second stage regulator, and these can be used for this purpose with little or no modification. This type of breathing apparatus may also use a full-face mask for delivery. [5]

Applications

Hyperbaric oxygen therapy

The traditional type of hyperbaric chamber used for therapeutic recompression and hyperbaric oxygen therapy is a rigid shelled pressure vessel. Such chambers can be run at absolute pressures typically about 6 bars (87  psi ), 600,000  Pa or more in special cases. [2] Navies, professional diving organizations, hospitals, and dedicated recompression facilities typically operate these. They range in size from semi-portable, one-patient units to room-sized units that can treat eight or more patients. They may be rated for lower pressures if not primarily intended for treatment of diving injuries.

A recompression chamber for a single diving casualty Hyperbaric oxygen therapy 1 person chamber.jpg
A recompression chamber for a single diving casualty

In the larger multiplace chambers, patients inside the chamber breathe from either "oxygen hoods" – flexible, transparent soft plastic hoods with a seal around the neck similar to a space suit helmet – or tightly fitting oxygen masks, which supply pure oxygen and may be designed to directly exhaust the exhaled gas from the chamber. During treatment patients breathe 100% oxygen most of the time to maximise the effectiveness of their treatment, but have periodic "air breaks" during which they breathe chamber air (21% oxygen) to reduce the risk of oxygen toxicity. The exhaled treatment gas must be removed from the chamber to prevent the buildup of oxygen, which could present a fire risk. Attendants may also breathe oxygen some of the time to reduce their risk of decompression sickness when they leave the chamber. The pressure inside the chamber is increased by opening valves allowing high-pressure air to enter from storage cylinders, which are filled by an air compressor. Chamber air oxygen content is kept between 19% and 23% to control fire risk (US Navy maximum 25%). [2] If the chamber does not have a scrubber system to remove carbon dioxide from the chamber gas, the chamber must be isobarically ventilated to keep the CO2 within acceptable limits. [2]

Therapeutic recompression

Hyperbaric oxygen therapy was developed as a treatment for diving disorders involving bubbles of gas in the tissues, such as decompression sickness and gas embolism, and it is still considered the definitive treatment for these conditions. The recompression treats decompression sickness and gas embolism by increasing pressure, which reduces the size of the gas bubbles and improves the transport of blood to downstream tissues. Elimination of the inert component of the breathing gas by breathing oxygen provides a stronger concentration gradient to eliminate dissolved inert gas still in the tissues, and further accelerates bubble reduction by dissolving the gas back into the blood. After elimination of bubbles, the pressure is gradually reduced back to atmospheric levels. The raised oxygen partial pressures in the blood may also help recovery of oxygen-starved tissues downstream of the blockages.

Emergency treatment for decompression illness follows schedules laid out in treatment tables. Most treatments recompress to 2.8 bars (41 psi) absolute, the equivalent of 18 metres (60 ft) of water, for 4.5 to 5.5 hours with the casualty breathing pure oxygen, but taking periodic air breaks to reduce oxygen toxicity. For serious cases resulting from very deep dives, the treatment may require a chamber capable of a maximum pressure of 8 bars (120 psi), the equivalent of 70 metres (230 ft) of water, and the ability to supply heliox and nitrox as a breathing gas. [6]

Surface decompression

Divers breathing oxygen in the chamber after a 240 feet (73 m) dive US Navy 020727-N-3725V-002 Sailors breathe oxygen after returning from diving on the USS Monitor.jpg
Divers breathing oxygen in the chamber after a 240 feet (73 m) dive

Surface decompression is a procedure in which some or all of the staged decompression obligation is done in a decompression chamber instead of in the water. [7] This reduces the time that the diver spends in the water, exposed to environmental hazards such as cold water or currents, which will enhance diver safety. The decompression in the chamber is more controlled, in a more comfortable environment, and oxygen can be used at greater partial pressure as there is no risk of drowning and a lower risk of oxygen toxicity convulsions. A further operational advantage is that once the divers are in the chamber, new divers can be supplied from the diving panel, and the operations can continue with less delay. [8]

A typical surface decompression procedure is described in the US Navy Diving Manual. If there is no in-water 40 ft stop required the diver is surfaced directly. Otherwise, all required decompression up to and including the 40 ft (12 m) stop is completed in-water. The diver is then surfaced and pressurised in a chamber to 50 fsw (15 msw) within 5 minutes of leaving 40 ft depth in the water. If this "surface interval" from 40 ft in the water to 50 fsw in the chamber exceeds 5 minutes, a penalty is incurred, as this indicates a higher risk of DCS symptoms developing, so longer decompression is required. [8]

In the case where the diver is successfully recompressed within the nominal interval, he will be decompressed according to the schedule in the air decompression tables for surface decompression, preferably on oxygen, which is used from 50 fsw (15 msw), a partial pressure of 2.5 bar. The duration of the 50 fsw stop is 15 minutes for the Revision 6 tables. The chamber is then decompressed to 40 fsw (12 msw) for the next stage of up to 4 periods of 30 minutes each on oxygen. A stop may also be done at 30 fsw (9 msw), for further periods on oxygen according to the schedule. Air breaks of 5 minutes are taken at the end of each 30 minutes of oxygen breathing. [8]

Saturation systems emergency gas supply

During decompression from saturation, a pressure will be reached where raising the oxygen concentration further would cause an unacceptable fire hazard, while keeping it at an acceptable level for fire risk would be inefficient for decompression. BIBS supply of breathing gas with higher oxygen content than the chamber atmosphere can solve this problem. If the atmosphere in a saturation habitat is contaminated, the inhabitants can use the available BIBS masks during the emergency and be supplied with non-contaminated breathing gas until the problem has been solved. [1]

Submarine emergency gas supply

Submarine BIBS systems are intended to provide the crew with diving quality air or nitrox breathing gas in an emergency escape situation where the interior may be partly or completely flooded, and may be at a significantly higher than atmospheric pressure. [9] [10]

The supply gas is provided from a high pressure storage bank at a pressure automatically compensated for depth and is distributed around the vessel to points where the breathing units can be connected as required. [9] [11] [10]

Related Research Articles

<span class="mw-page-title-main">Decompression sickness</span> Disorder caused by dissolved gases forming bubbles in tissues

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

<span class="mw-page-title-main">Hyperbaric medicine</span> Medical treatment at raised ambient pressure

Hyperbaric medicine is a medical treatment in which an increase in barometric pressure over ambient pressure is employed increasing the partial pressures of all gasses present in the compressed air. The immediate effects include reducing the size of gas embolisms and raising the partial pressures of all gasses present according to Henry's law. Currently, there are two types of hyperbaric medicine depending on the gases compressed, hyperbaric air and hyprbaric oxygen.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Saturation diving</span> Diving decompression technique

Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the oxygen to a non-toxic level in the tissues, which can cause decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.

In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) by returning the diver underwater to help the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a procedure that exposes the diver to significant risk which should be compared with the risk associated with the available options and balanced against the probable benefits. Some authorities recommend that it is only to be used when the time to travel to the nearest recompression chamber is too long to save the victim's life; others take a more pragmatic approach and accept that in some circumstances IWR is the best available option. The risks may not be justified for case of mild symptoms likely to resolve spontaneously, or for cases where the diver is likely to be unsafe in the water, but in-water recompression may be justified in cases where severe outcomes are likely if not recompressed, if conducted by a competent and suitably equipped team.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Oxygen mask</span> Interface between the oxygen delivery system and the human user

An oxygen mask is a mask that provides a method to transfer breathing oxygen gas from a storage tank to the lungs. Oxygen masks may cover only the nose and mouth or the entire face. They may be made of plastic, silicone, or rubber. In certain circumstances, oxygen may be delivered via a nasal cannula instead of a mask.

<span class="mw-page-title-main">Diving chamber</span> Hyperbaric pressure vessel for human occupation used in diving operations

A diving chamber is a vessel for human occupation, which may have an entrance that can be sealed to hold an internal pressure significantly higher than ambient pressure, a pressurised gas system to control the internal pressure, and a supply of breathing gas for the occupants.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, usually following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place generally means a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

<span class="mw-page-title-main">Breathing performance of regulators</span> Tests of underwater breathing apparatus

The breathing performance of regulators is a measure of the ability of a breathing gas regulator to meet the demands placed on it at varying ambient pressures and temperatures, and under varying breathing loads, for the range of breathing gases it may be expected to deliver. Performance is an important factor in design and selection of breathing regulators for any application, but particularly for underwater diving, as the range of ambient operating pressures and temperatures, and variety of breathing gases is broader in this application. A diving regulator is a device that reduces the high pressure in a diving cylinder or surface supply hose to the same pressure as the diver's surroundings. It is desirable that breathing from a regulator requires low effort even when supplying large amounts of breathing gas as this is commonly the limiting factor for underwater exertion, and can be critical during diving emergencies. It is also preferable that the gas is delivered smoothly without any sudden changes in resistance while inhaling or exhaling, and that the regulator does not lock up and either fail to supply gas or free-flow. Although these factors may be judged subjectively, it is convenient to have standards by which the many different types and manufactures of regulators may be objectively compared.

<span class="mw-page-title-main">Orinasal mask</span> Breathing mask that covers the mouth and the nose only.

An orinasal mask, oro-nasal mask or oral-nasal mask is a breathing mask that covers the mouth and the nose only. It may be a complete independent item, as an oxygen mask, or on some anaesthetic apparatuses, or it may be fitted as a component inside a fullface mask on underwater breathing apparatus, a gas mask or an industrial respirator to reduce the amount of dead space. It may be designed for its lower edge to seal on the front of the lower jaw or to go under the chin.

<span class="mw-page-title-main">Decompression practice</span> Techniques and procedures for safe decompression of divers

To prevent or minimize decompression sickness, divers must properly plan and monitor decompression. Divers follow a decompression model to safely allow the release of excess inert gases dissolved in their body tissues, which accommodated as a result of breathing at ambient pressures greater than surface atmospheric pressure. Decompression models take into account variables such as depth and time of dive, breathing gasses, altitude, and equipment to develop appropriate procedures for safe ascent.

<span class="mw-page-title-main">Hyperbaric treatment schedules</span> Planned hyperbaric exposure using a specified breathing gas as medical treatment

Hyperbaric treatment schedules or hyperbaric treatment tables, are planned sequences of events in chronological order for hyperbaric pressure exposures specifying the pressure profile over time and the breathing gas to be used during specified periods, for medical treatment. Hyperbaric therapy is based on exposure to pressures greater than normal atmospheric pressure, and in many cases the use of breathing gases with oxygen content greater than that of air.

<span class="mw-page-title-main">Decompression equipment</span> Equipment used by divers to facilitate decompression

There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher ambient pressures.

<span class="mw-page-title-main">Metre sea water</span> Unit of pressure equal to one tenth of a bar

The metresea water (msw) is a metric unit of pressure used in underwater diving. It is defined as one tenth of a bar.

<span class="mw-page-title-main">Index of underwater diving</span> Alphabetical listing of underwater diving related topics

The following index is provided as an overview of and topical guide to underwater diving:

Demand Valve Oxygen Therapy (DVOT) is a way of delivering high flow oxygen therapy using a device that only delivers oxygen when the patient breathes in and shuts off when they breathe out. DVOT is commonly used to treat conditions such as cluster headache, which affects up to four in 1000 people (0.4%), and is a recommended first aid procedure for several diving disorders. It is also a recommended prophylactic for decompression sickness in the event of minor omitted decompression without symptoms.

<span class="mw-page-title-main">Mechanism of diving regulators</span> Arrangement and function of the components of regulators for underwater diving

The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.

The US Navy has used several decompression models from which their published decompression tables and authorized diving computer algorithms have been derived. The original C&R tables used a classic multiple independent parallel compartment model based on the work of J.S.Haldane in England in the early 20th century, using a critical ratio exponential ingassing and outgassing model. Later they were modified by O.D. Yarborough and published in 1937. A version developed by Des Granges was published in 1956. Further developments by M.W. Goodman and Robert D. Workman using a critical supersaturation approach to incorporate M-values, and expressed as an algorithm suitable for programming were published in 1965, and later again a significantly different model, the VVAL 18 exponential/linear model was developed by Edward D. Thalmann, using an exponential ingassing model and a combined exponential and linear outgassing model, which was further developed by Gerth and Doolette and published in Revision 6 of the US Navy Diving Manual as the 2008 tables.

References

  1. 1 2 3 4 5 6 7 8 9 "Ultralite 2 BIBS Mask (DE-MDS-540-R0)" (PDF). Divex. Archived from the original (PDF) on 25 September 2018. Retrieved 25 September 2018.
  2. 1 2 3 4 5 U.S. Navy Supervisor of Diving (April 2008). "Chapter 21: Recompression Chamber Operation". U.S. Navy Diving Manual. Volume 5: Diving Medicine and Recompression Chamber Operations (PDF). SS521-AG-PRO-010, Revision 6. U.S. Naval Sea Systems Command. Archived from the original (PDF) on March 31, 2014. Retrieved 2009-06-29.
  3. 1 2 "A Lightweight, and Extremely Robust, Built In Breathing System for Hyperbaric Chambers" (PDF). Aberdeen, Scotland: C-Tecnics Ltd. Archived from the original (PDF) on 25 September 2018. Retrieved 25 September 2018.
  4. "450M-01 BIBS Mask". Amron International. Retrieved 25 September 2018.
  5. Kaplan, Robert D. (30 September 2008). Hog Pilots, Blue Water Grunts. Knopf Doubleday Publishing. p. 395. ISBN   9780307472694.
  6. U.S. Navy Supervisor of Diving (Apr 2008). "20". U.S. Navy Diving Manual (PDF). SS521-AG-PRO-010, revision 6. Vol. 5. U.S. Naval Sea Systems Command. Archived from the original (PDF) on March 31, 2014. Retrieved 2009-06-29.
  7. Staff (15 April 2008). "9-3 Air Decompression definitions". U.S. Navy Diving Manual (R6 ed.). Naval sea systems command, US Navy.
  8. 1 2 3 U.S. Navy Supervisor of Diving (April 2008). "Chapter 9 section 8: The air decompression table". U.S. Navy Diving Manual (PDF). SS521-AG-PRO-010, Revision 6. U.S. Naval Sea Systems Command. Archived (PDF) from the original on March 31, 2014. Retrieved 2009-06-29.
  9. 1 2 "Built in breathing system". Bremen: Georg Schünemann GmbH. Retrieved 25 September 2018.
  10. 1 2 "Submarine Built In Breathing System (BIBS)". Apeks diving. Retrieved 25 September 2018.
  11. "Built-In-Breathing System (BIBS)". Hale Hamilton. Retrieved 25 September 2018.