NOAA Diving Manual

Last updated
NOAA Diving Manual
NOAA Diving Manual 5th ed.png
Cover of the 5th edition
CountryUS
LanguageEnglish
SubjectScientific diving theory and operations
GenreNon-fiction
PublisherBest Publishing Company
Publication date
1977

The NOAA Diving Manual: Diving for Science and Technology is a book originally published by the US Department of Commerce for use as training and operational guidance for National Oceanographic and Atmospheric Administration divers. NOAA also publish a Diving Standards and Safety Manual (NDSSM), which describes the minimum safety standards for their diving operations. Several editions of the diving manual have been published, and several editors and authors have contributed over the years. The book is widely used as a reference work by professional and recreational divers.

Contents

Overview

The book summarizes the state of the art for scientific diving, [1] and provides detailed but accessible explanations of the physics and physiology of diving, diving equipment, and diving procedures, at a level appropriate for the diving scientist and scientific diving team supervisor. [2]

Content

The book is subdivided into sections and pages are numbered with reference to the section number. Sections of the second edition include: [2]

The appendices include: [2]

Reviews

The 4th edition was well received by Briscoe and Carmichael 2002 in Volume 15 of Oceanography [1]

Impact

Although subtitled as Diving for Science and Technology, the NOAA Diving Manual is considered a useful reference for all fields of underwater diving. [1]

Editions

The first edition was published by the US Department of Commerce in 1977, [1]

The second edition was published by the US Department of Commerce in 1979 in hard? and soft cover. The editor was James W. Miller. [1] [2]

The third edition was published in 1991, [1]

The fourth edition was published by Best Publishing Company in 2001 in hardcover, softcover and searchable CD-ROM versions The new material in the 4th edition includes the use of "oxygen-enriched air," commonly called Nitrox, which is widely used in both scientific and recreational diving to reduce the risk of decompression sickness. [1] [3]

The fifth edition was published in paperback by Best Publishing Company on June 10, 2013, with 875 pages. ISBN   978-1930536630 [4]

The sixth edition was published in paperback and as an e-book by Best Publishing Company on July 31, 2017, with 800 pages, ISBN   978-1930536883. New chapters in the 6th edition are: Advanced Platform Support – diving with ROVs/AUVs, submersibles, and atmospheric diving systems, and Underwater Photography and Videography. Other chapters were significantly revised: Diving Equipment, Procedures for Scientific Dives, Rebreathers, and Polluted-Water Diving. The editor was Greg McFall. [5]

Related Research Articles

Nitrox refers to any gas mixture composed of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater diving, nitrox is normally distinguished from air and handled differently. The most common use of nitrox mixtures containing oxygen in higher proportions than atmospheric air is in scuba diving, where the reduced partial pressure of nitrogen is advantageous in reducing nitrogen uptake in the body's tissues, thereby extending the practicable underwater dive time by reducing the decompression requirement, or reducing the risk of decompression sickness.

Trimix (breathing gas) Breathing gas consisting of oxygen, helium and nitrogen

Trimix is a breathing gas consisting of oxygen, helium and nitrogen and is used in deep commercial diving, during the deep phase of dives carried out using technical diving techniques, and in advanced recreational diving.

Technical diving Extended scope recreational diving

Technical diving is scuba diving that exceeds the agency-specified limits of recreational diving for non-professional purposes. Technical diving may expose the diver to hazards beyond those normally associated with recreational diving, and to greater risk of serious injury or death. The risk may be reduced by appropriate skills, knowledge and experience, and by using suitable equipment and procedures. The skills may be developed through appropriate specialised training and experience. The equipment often involves breathing gases other than air or standard nitrox mixtures, and multiple gas sources.

Diving medicine Diagnosis, treatment and prevention of disorders caused by underwater diving

Diving medicine, also called undersea and hyperbaric medicine (UHB), is the diagnosis, treatment and prevention of conditions caused by humans entering the undersea environment. It includes the effects on the body of pressure on gases, the diagnosis and treatment of conditions caused by marine hazards and how relationships of a diver's fitness to dive affect a diver's safety. Diving medical practitioners are also expected to be competent in the examination of divers and potential divers to determine fitness to dive.

Scuba diving Swimming underwater breathing gas carried by the diver

Scuba diving is a mode of underwater diving where the diver uses a self-contained underwater breathing apparatus (scuba), which is completely independent of surface supply, to breathe underwater. Scuba divers carry their own source of breathing gas, usually compressed air, allowing them greater independence and freedom of movement than surface-supplied divers, and longer underwater endurance than breath-hold divers. Although the use of compressed air is common, a mixture of air and oxygen called enriched air or nitrox has become popular due to its benefit of reduced nitrogen intake during long or repetitive dives. Open circuit scuba systems discharge the breathing gas into the environment as it is exhaled, and consist of one or more diving cylinders containing breathing gas at high pressure which is supplied to the diver through a regulator. They may include additional cylinders for range extension, decompression gas or emergency breathing gas. Closed-circuit or semi-closed circuit rebreather scuba systems allow recycling of exhaled gases. The volume of gas used is reduced compared to that of open circuit, so a smaller cylinder or cylinders may be used for an equivalent dive duration. Rebreathers extend the time spent underwater compared to open circuit for the same gas consumption; they produce fewer bubbles and less noise than open circuit scuba which makes them attractive to covert military divers to avoid detection, scientific divers to avoid disturbing marine animals, and media divers to avoid bubble interference.

Diving chamber Hyperbaric pressure vessel for human occupation used in diving operations

A diving chamber is a vessel for human occupation, which may have an entrance that can be sealed to hold an internal pressure significantly higher than ambient pressure, a pressurised gas system to control the internal pressure, and a supply of breathing gas for the occupants.

Underwater diving Descending below the surface of the water to interact with the environment

Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving. Humans are not physiologically and anatomically well adapted to the environmental conditions of diving, and various equipment has been developed to extend the depth and duration of human dives, and allow different types of work to be done.

Dick Rutkowski American pioneer in hyperbaric and diving medicine and use of mixed breathing gases for diving

Richard Rutkowski is a pioneer in the fields of hyperbaric medicine, diving medicine and diver training, especially in relation to the use of breathing gases.

Decompression (diving) The reduction of ambient pressure on underwater divers after hyperbaric exposure and the elimination of dissolved gases from the divers tissues

The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body, which occurs during the ascent, largely during pauses in the ascent known as decompression stops, and after surfacing until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress, Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

Diver training Processes by which people develop the skills and knowledge to dive safely underwater

Diver training is the set of processes through which a person learns the necessary and desirable skills to safely dive underwater within the scope of the diver training standard relevant to the specific training programme. Most diver training follows procedures and schedules laid down in the associated training standard, in a formal training programme, and includes relevant foundational knowledge of the underlying theory, including some basic physics, physiology and environmental information, practical skills training in the selection and safe use of the associated equipment in the specified underwater environment, and assessment of the required skills and knowledge deemed necessary by the certification agency to allow the newly certified diver to dive within the specified range of conditions at an acceptable level of risk. Recognition of prior learning is allowed in some training standards.

Decompression practice Techniques and procedures for safe decompression of divers

The practice of decompression by divers comprises the planning and monitoring of the profile indicated by the algorithms or tables of the chosen decompression model, to allow asymptomatic and harmless release of excess inert gases dissolved in the tissues as a result of breathing at ambient pressures greater than surface atmospheric pressure, the equipment available and appropriate to the circumstances of the dive, and the procedures authorized for the equipment and profile to be used. There is a large range of options in all of these aspects.

Robert William Hamilton Jr. American physiologist and researcher in hyperbaric physiology.

Robert William Hamilton Jr. was an American physiologist known for his work in hyperbaric physiology.

Hyperbaric treatment schedules Planned sequences of hyperbaric pressure exposure using a specified breathing gas as medical treatment

Hyperbaric treatment schedules or hyperbaric treatment tables, are planned sequences of events in chronological order for hyperbaric pressure exposures specifying the pressure profile over time and the breathing gas to be used during specified periods, for medical treatment. Hyperbaric therapy is based on exposure to pressures greater than normal atmospheric pressure, and in many cases the use of breathing gases with oxygen content greater than that of air.

Decompression equipment Equipment used by divers to facilitate decompression

There are several categories of decompression equipment used to help divers decompress, which is the process required to allow divers to return to the surface safely after spending time underwater at higher pressures.

John Morgan Wells Physiologist, aquanaut, and researcher into saturation diving and the use of nitrox and trimix as breathing gases

John Morgan Wells was a marine biologist, and physiologist involved in the development of decompression systems for deep diving, and the use of nitrox as a breathing gas for diving. He is known for developing the widely used NOAA Nitrox I and II mixtures and their decompression tables in the late 1970s, the deep diving mixture of oxygen, helium, and nitrogen known as NOAA Trimix I, for research in undersea habitats, where divers live and work under pressure for extended periods, and for training diving physicians and medical technicians in hyperbaric medicine.

History of scuba diving History of diving using self-contained underwater breathing apparatus

The history of scuba diving is closely linked with the history of scuba equipment. By the turn of the twentieth century, two basic architectures for underwater breathing apparatus had been pioneered; open-circuit surface supplied equipment where the diver's exhaled gas is vented directly into the water, and closed-circuit breathing apparatus where the diver's carbon dioxide is filtered from the exhaled breathing gas, which is then recirculated, and more gas added to replenish the oxygen content. Closed circuit equipment was more easily adapted to scuba in the absence of reliable, portable, and economical high pressure gas storage vessels. By the mid-twentieth century, high pressure cylinders were available and two systems for scuba had emerged: open-circuit scuba where the diver's exhaled breath is vented directly into the water, and closed-circuit scuba where the carbon dioxide is removed from the diver's exhaled breath which has oxygen added and is recirculated. Oxygen rebreathers are severely depth limited due to oxygen toxicity risk, which increases with depth, and the available systems for mixed gas rebreathers were fairly bulky and designed for use with diving helmets. The first commercially practical scuba rebreather was designed and built by the diving engineer Henry Fleuss in 1878, while working for Siebe Gorman in London. His self contained breathing apparatus consisted of a rubber mask connected to a breathing bag, with an estimated 50–60% oxygen supplied from a copper tank and carbon dioxide scrubbed by passing it through a bundle of rope yarn soaked in a solution of caustic potash. During the 1930s and all through World War II, the British, Italians and Germans developed and extensively used oxygen rebreathers to equip the first frogmen. In the U.S. Major Christian J. Lambertsen invented a free-swimming oxygen rebreather. In 1952 he patented a modification of his apparatus, this time named SCUBA, an acronym for "self-contained underwater breathing apparatus," which became the generic English word for autonomous breathing equipment for diving, and later for the activity using the equipment. After World War II, military frogmen continued to use rebreathers since they do not make bubbles which would give away the presence of the divers. The high percentage of oxygen used by these early rebreather systems limited the depth at which they could be used due to the risk of convulsions caused by acute oxygen toxicity.

Outline of underwater diving Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

Index of underwater diving Alphabetical listing of underwater diving related articles

The following index is provided as an overview of and topical guide to underwater diving:

Diving support equipment is the equipment used to facilitate a diving operation. It is either not taken into the water during the dive, such as the gas panel and compressor, or is not integral to the actual diving, being there to make the dive easier or safer, such as a surface decompression chamber. Some equipment, like a diving stage, is not easily categorised as diving or support equipment, and may be considered as either.

<i>U.S. Navy Diving Manual</i> Training and operations handbook

The U.S. Navy Diving Manual is a book used by the US Navy for diver training and diving operations.

References

  1. 1 2 3 4 5 6 7 Briscoe, M.G.; Carmichael, R.B. (2002). "Comments on technology transfer in diving: Based on a review of the NOAA Diving Manual, Fourth Edition". Oceanography. 15 (2): 102–105. doi: 10.5670/oceanog.2002.30 .
  2. 1 2 3 4 NOAA Diving Program (U.S.) (December 1979). Miller, James W. (ed.). NOAA Diving Manual, Diving for Science and Technology (2nd ed.). Silver Spring, Maryland: US Department of Commerce: National Oceanic and Atmospheric Administration, Office of Ocean Engineering.
  3. NOAA Diving Program (U.S.) (28 Feb 2001). Joiner, James T. (ed.). NOAA Diving Manual, Diving for Science and Technology (4th ed.). Silver Spring, Maryland: National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, National Undersea Research Program. ISBN   978-0-941332-70-5. CD-ROM prepared and distributed by the National Technical Information Service (NTIS)in partnership with NOAA and Best Publishing Company
  4. "NOAA Diving Manual 5th Edition". amazon.com. Retrieved 13 May 2018.
  5. "NOAA Diving Manual 6th Edition". bestpub.com. Retrieved 13 May 2018.