Hyperbaric welding

Last updated
Underwater welding Working Diver 01.jpg
Underwater welding
Underwater welding habitat for dry hyperbaric welding Stralsund, Nautineum, Unterwasserschweisskammer (2013-07-30), by Klugschnacker in Wikipedia.JPG
Underwater welding habitat for dry hyperbaric welding

Hyperbaric welding is the process of welding at elevated pressures, normally underwater. [1] [2] Hyperbaric welding can either take place wet in the water itself or dry inside a specially constructed positive pressure enclosure and hence a dry environment. It is predominantly referred to as "hyperbaric welding" when used in a dry environment, and "underwater welding" when in a wet environment. The applications of hyperbaric welding are diverseit is often used to repair ships, offshore oil platforms, and pipelines. Steel is the most common material welded.

Contents

Dry welding is used in preference to wet underwater welding when high quality welds are required because of the increased control over conditions which can be maintained, such as through application of prior and post weld heat treatments. This improved environmental control leads directly to improved process performance and a generally much higher quality weld than a comparative wet weld. Thus, when a very high quality weld is required, dry hyperbaric welding is normally utilized. Research into using dry hyperbaric welding at depths of up to 1,000 metres (3,300 ft) is ongoing. [3] In general, assuring the integrity of underwater welds can be difficult (but is possible using various nondestructive testing applications), especially for wet underwater welds, because defects are difficult to detect if the defects are beneath the surface of the weld.

Underwater hyperbaric welding was invented by the Soviet metallurgist Konstantin Khrenov in 1932. [4]

Application

Welding processes have become increasingly important in almost all manufacturing industries and for structural applications (metal skeletons of buildings). [5] Of the many techniques for welding in atmosphere, most cannot be applied in offshore and marine applications in contact with water. Most offshore repair and surfacing work is done at shallow depth or in the region intermittently covered by water (the splash zone). However, the most technologically challenging task is repair at greater depths, especially for pipeline construction and the repair of tears and breaks in marine structures and vessels. Underwater welding can be the least expensive option for marine maintenance and repair, because it bypasses the need to pull the structure out of the sea and saves valuable time and dry docking costs. It also enables emergency repairs to allow the damaged structure to be safely transported to dry facilities for permanent repair or scrapping. Underwater welding is applied in both inland and offshore environments, though seasonal weather inhibits offshore underwater welding during winter. In either location, surface supplied air is the most common diving method for underwater welders.

Dry welding

Dry hyperbaric welding involves the weld being performed at raised pressure in a chamber filled with a gas mixture sealed around the structure being welded.

Most arc welding processes such as shielded metal arc welding (SMAW), flux-cored arc welding (FCAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), plasma arc welding (PAW) could be operated at hyperbaric pressures, but all suffer as the pressure increases. [6] Gas tungsten arc welding is most commonly used. The degradation is associated with physical changes of the arc behaviour as the gas flow regime around the arc changes and the arc roots contract and become more mobile. Of note is a dramatic increase in arc voltage which is associated with the increase in pressure. Overall a degradation in capability and efficiency results as the pressure increases.

Special control techniques have been applied which have allowed welding down to 2,500 m (8,200 ft) simulated water depth in the laboratory, but dry hyperbaric welding has thus far been limited operationally to less than 400 m (1,300 ft) water depth by the physiological capability of divers to operate the welding equipment at high pressures and practical considerations concerning construction of an automated pressure / welding chamber at depth. [7]

Wet welding

A diver practices underwater welding in a training pool Sailor performs an underwater fillet weld in a training pool at the ROK engineering school . (25226373464).jpg
A diver practices underwater welding in a training pool

Wet underwater welding directly exposes the diver and electrode to the water and surrounding elements. Divers usually use around 300–400 amps of direct current to power their electrode, and they weld using varied forms of arc welding. This practice commonly uses a variation of shielded metal arc welding, employing a waterproof electrode. [2] Other processes that are used include flux-cored arc welding and friction welding. [2] In each of these cases, the welding power supply is connected to the welding equipment through cables and hoses. The process is generally limited to low carbon equivalent steels, especially at greater depths, because of hydrogen-caused cracking. [2]

Wet welding with a stick electrode is done with similar equipment to that used for dry welding, but the electrode holders are designed for water cooling and are more heavily insulated. They will overheat if used out of the water. A constant current welding machine is used for manual metal arc welding. Direct current is used, and a heavy duty isolation switch is installed in the welding cable at the surface control position, so that the welding current can be disconnected when not in use. The welder instructs the surface operator to make and break the contact as required during the procedure. The contacts should only be closed during actual welding, and opened at other times, particularly when changing electrodes. [8]

The electric arc heats the workpiece and the welding rod, and the molten metal is transferred through the gas bubble around the arc. The gas bubble is partly formed from decomposition of the flux coating on the electrode but it is usually contaminated to some extent by steam. Current flow induces transfer of metal droplets from the electrode to the workpiece and enables positional welding by a skilled operator. Slag deposition on the weld surface helps to slow the rate of cooling, but rapid cooling is one of the biggest problems in producing a quality weld. [8]

Hazards and risks

The hazards of underwater welding include the risk of electric shock for the welder. To prevent this, the welding equipment must be adaptable to a marine environment, properly insulated and the welding current must be controlled. Commercial divers must also consider the occupational safety issues that divers face, most notably the risk of decompression sickness due to the increased pressure of breathing gases. [9] Many divers have reported a metallic taste that is related to the galvanic breakdown of dental amalgam. [10] [11] [12] There may also be long term cognitive and possibly musculoskeletal effects associated with underwater welding. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

<span class="mw-page-title-main">Arc welding</span> Process used to fuse metal by using heat from an electrical arc

Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding power supply to create an electric arc between a metal stick ("electrode") and the base material to melt the metals at the point of contact. Arc welding power supplies can deliver either direct (DC) or alternating (AC) current to the work, while consumable or non-consumable electrodes are used.

<span class="mw-page-title-main">Breathing gas</span> Gas used for human respiration

A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common and only natural breathing gas, but other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.

<span class="mw-page-title-main">Saturation diving</span> Diving decompression technique

Saturation diving is diving for periods long enough to bring all tissues into equilibrium with the partial pressures of the inert components of the breathing gas used. It is a diving mode that reduces the number of decompressions divers working at great depths must undergo by only decompressing divers once at the end of the diving operation, which may last days to weeks, having them remain under pressure for the whole period. A diver breathing pressurized gas accumulates dissolved inert gas used in the breathing mixture to dilute the nitrogen to a non-toxic level in the tissues, which can cause decompression sickness if permitted to come out of solution within the body tissues; hence, returning to the surface safely requires lengthy decompression so that the inert gases can be eliminated via the lungs. Once the dissolved gases in a diver's tissues reach the saturation point, however, decompression time does not increase with further exposure, as no more inert gas is accumulated.

In-water recompression (IWR) or underwater oxygen treatment is the emergency treatment of decompression sickness (DCS) by returning the diver underwater to help the gas bubbles in the tissues, which are causing the symptoms, to resolve. It is a procedure that exposes the diver to significant risk which should be compared with the risk associated with the available options and balanced against the probable benefits. Some authorities recommend that it is only to be used when the time to travel to the nearest recompression chamber is too long to save the victim's life, others take a more pragmatic approach, and accept that in some circumstances IWR is the best available option. The risks may not be justified for case of mild symptoms likely to resolve spontaneously, or for cases where the diver is likely to be unsafe in the water, but in-water recompression may be justified in cases where severe outcomes are likely if not recompressed, if conducted by a competent and suitably equipped team.

<span class="mw-page-title-main">Diving bell</span> Chamber for transporting divers vertically through the water

A diving bell is a rigid chamber used to transport divers from the surface to depth and back in open water, usually for the purpose of performing underwater work. The most common types are the open-bottomed wet bell and the closed bell, which can maintain an internal pressure greater than the external ambient. Diving bells are usually suspended by a cable, and lifted and lowered by a winch from a surface support platform. Unlike a submersible, the diving bell is not designed to move under the control of its occupants, or to operate independently of its launch and recovery system.

<span class="mw-page-title-main">Diving medicine</span> Diagnosis, treatment and prevention of disorders caused by underwater diving

Diving medicine, also called undersea and hyperbaric medicine (UHB), is the diagnosis, treatment and prevention of conditions caused by humans entering the undersea environment. It includes the effects on the body of pressure on gases, the diagnosis and treatment of conditions caused by marine hazards and how relationships of a diver's fitness to dive affect a diver's safety. Diving medical practitioners are also expected to be competent in the examination of divers and potential divers to determine fitness to dive.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as autogenous welds, or fusion welds do not require it. When helium is used, this is known as heliarc welding. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma. TIG welding is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminum, magnesium, and copper alloys. The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing stronger, higher-quality welds. However, TIG welding is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques. A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated.

<span class="mw-page-title-main">Plasma arc welding</span>

Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.

<span class="mw-page-title-main">Diving chamber</span> Hyperbaric pressure vessel for human occupation used in diving operations

A diving chamber is a vessel for human occupation, which may have an entrance that can be sealed to hold an internal pressure significantly higher than ambient pressure, a pressurised gas system to control the internal pressure, and a supply of breathing gas for the occupants.

<span class="mw-page-title-main">Diver rescue</span> Rescue of a distressed or incapacitated diver

Diver rescue, following an accident, is the process of avoiding or limiting further exposure to diving hazards and bringing a diver to a place of safety. A safe place is often a place where the diver cannot drown, such as a boat or dry land, where first aid can be administered and from which professional medical treatment can be sought. In the context of surface supplied diving, the place of safety for a diver with a decompression obligation is often the diving bell.

Peter B. Bennett was the founder and a president and CEO of the Divers Alert Network (DAN), a non-profit organization devoted to assisting scuba divers in need. He was a professor of anesthesiology at Duke University Medical Center, and was the Senior Director of the Center for Hyperbaric Medicine and Environmental Physiology at Duke. Bennett is recognized as a leading authority on the effects of high pressure on human physiology.

<span class="mw-page-title-main">Friction stud welding</span>

Friction stud welding is a solid phase welding technique involving a stud or appurtenance being rotated at high speed while being forced against a substrate, generating heat by friction. The metal surfaces reach a temperature at which they flow plastically under pressure, surface impurities are expelled and a forged weld is formed.

<span class="mw-page-title-main">Commercial offshore diving</span> Professional diving in support of the oil and gas industry

Commercial offshore diving, sometimes shortened to just offshore diving, generally refers to the branch of commercial diving, with divers working in support of the exploration and production sector of the oil and gas industry in places such as the Gulf of Mexico in the United States, the North Sea in the United Kingdom and Norway, and along the coast of Brazil. The work in this area of the industry includes maintenance of oil platforms and the building of underwater structures. In this context "offshore" implies that the diving work is done outside of national boundaries. Technically it also refers to any diving done in the international offshore waters outside of the territorial waters of a state, where national legislation does not apply. Most commercial offshore diving is in the Exclusive Economic Zone of a state, and much of it is outside the territorial waters. Offshore diving beyond the EEZ does also occur, and is often for scientific purposes.

Gas blending is the process of mixing gases for a specific purpose where the composition of the resulting mixture is specified and controlled. A wide range of applications include scientific and industrial processes, food production and storage and breathing gases.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Outline of underwater diving</span> Hierarchical outline list of articles related to underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

Underwater construction is industrial construction in an underwater environment. It is a part of the marine construction industry. It can involve the use of a variety of building materials, mainly concrete and steel. There is often, but not necessarily, a significant component of commercial diving involved. Some underwater work can be done by divers, but they are limited by depth and site conditions, and it is hazardous work, with expensive risk reduction and mitigation, and a limited range of suitable equipment. Remotely operated underwater vehicles are an alternative for some classes of work, but are also limited and expensive. When reasonably practicable, the bulk of the work is done out of the water, with underwater work restricted to installation, modification and repair, and inspection.

<span class="mw-page-title-main">Underwater cutting and welding</span> Metalworking techniques used by underwater divers

Underwater cutting and welding are metalworking techniques used by underwater divers in underwater construction, marine salvage and clearance diving applications. Most underwater welding is direct current wet stick welding, and most underwater metal cutting is immersed oxygen-arc and shielded metal-arc cutting, though other technologies are available and sometimes used. These processes are mostly applied to steel structures as that is the most common arc-weldable material used in the underwater environment.

References

  1. Keats, DJ (2005). Underwater Wet Welding - A Welder's Mate. Speciality Welds Ltd. p. 300. ISBN   1-899293-99-X.
  2. 1 2 3 4 Cary, HB; Helzer, SC (2005). Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education. pp. 677–681. ISBN   0-13-113029-3.
  3. Bennett PB, Schafstall H (1992). "Scope and design of the GUSI international research program". Undersea Biomedical Research. 19 (4): 231–41. PMID   1353925. Archived from the original on December 14, 2008. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  4. Carl W. Hall A biographical dictionary of people in engineering: from the earliest records until 2000, Vol. 1, Purdue University Press, 2008 ISBN   1-55753-459-4 p. 120
  5. Khanna, 2004
  6. Properties of the constricted gas Tungsten (Plasma) Arc at Elevated Pressures. Vol. Ph.D. Thesis. Cranfield University, UK. 1991.
  7. Hart, PR (1999). A Study of non-consumable welding processes for diverless deepwater hyperbaric welding to 2500m water depth. Vol. Ph.D. Thesis. Cranfield University, UK.
  8. 1 2 Bevan, John, ed. (2005). "Section 3.3". The Professional Divers's Handbook (second ed.). Alverstoke, GOSPORT, Hampshire: Submex Ltd. pp. 122–125. ISBN   978-0950824260.
  9. US Navy Diving Manual, 6th revision. United States: US Naval Sea Systems Command. 2006. Archived from the original on 2008-05-02. Retrieved 2008-07-05.
  10. Ortendahl TW, Dahlén G, Röckert HO (March 1985). "Evaluation of oral problems in divers performing electrical welding and cutting under water". Undersea Biomed Res. 12 (1): 69–76. PMID   4035819. Archived from the original on December 14, 2008. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  11. Ortendahl TW, Högstedt P (November 1988). "Magnetic field effects on dental amalgam in divers welding and cutting electrically underwater". Undersea Biomed Res. 15 (6): 429–41. PMID   3227576. Archived from the original on December 14, 2008. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  12. Ortendahl TW, Högstedt P, Odelius H, Norén JG (November 1988). "Effects of magnetic fields from underwater electrical cutting on in vitro corrosion of dental amalgam". Undersea Biomed Res. 15 (6): 443–55. PMID   3227577. Archived from the original on December 14, 2008. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  13. Macdiarmid JI, Ross JA, Semple S, Osman LM, Watt SJ, Crawford JR (2005). "Further investigation of possible musculoskeletal and cognitive deficit due to welding in divers identified in the ELTHI diving study" (PDF). Health and Safety Executive. Technical Report rr390. Retrieved 2008-07-05.