MAP3K3

Last updated
MAP3K3
Protein MAP3K3 PDB 2c60.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MAP3K3 , MAPKKK3, MEKK3, mitogen-activated protein kinase kinase kinase 3
External IDs OMIM: 602539 MGI: 1346874 HomoloGene: 69110 GeneCards: MAP3K3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002401
NM_203351
NM_001330431
NM_001363768

NM_011947

RefSeq (protein)

NP_001317360
NP_002392
NP_976226
NP_001350697

NP_036077

Location (UCSC) Chr 17: 63.62 – 63.7 Mb Chr 11: 105.98 – 106.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Mitogen-activated protein kinase kinase kinase 3 is an enzyme that in humans is encoded by the MAP3K3 gene, [5] which is located on the long arm of chromosome 17 (17q23.3). [6]

Contents

Function

This gene product is a 626-amino acid polypeptide that is 96.5% identical to mouse MEKK3. Its catalytic domain is closely related to those of several other kinases, including mouse MEKK2, tobacco NPK, and yeast STE11. Northern blot analysis revealed a 4.6-kb transcript that appears to be ubiquitously expressed.

MAP3Ks are involved in regulating cell fate in response to external stimuli. [7] MAP3K3 directly regulates the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by activating SEK and MEK1/2 respectively. In cotransfection assays, it enhanced transcription from a nuclear factor kappa-B (NF-κB)-dependent reporter gene, consistent with a role in the SAPK pathway. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [8] MEKK3 regulates the p38, JNK and ERK1/2 pathways. [7]

Interactions

MAP3K3 has been shown to interact with [SQSTM1/p62],:

MAP3K3 in cancer

Two SNPs in the MAP3K3 gene were found as candidates for association with colon and rectal cancers. [15]

MEKK3 is highly expressed in 4 ovarian cancer cell lines (OVCA429, Hey, DOV13, and SKOv3). This expression level is significantly higher in those cancer cells when compared to normal cells. MEKK3 expression levels are comparable to IKK kinase activities, which also relate to activation of NFκB. High expression of MEKK3 in most of these ovarian cancer cells supposedly activate IKK kinase activity, which lead to increased levels of active NFκB. Also, MEKK3 interacts with AKT to activate NFκB. Genes related to cell survival and anti-apoptosis have increased expression in most cancer cells with high levels of MEKK3. This is probably due to constitutive activation of NFκB, which will regulate those genes. In this sense, knockdown of MEKK3 caused ovarian cancer cells to be more sensitive to drugs. [10]

MEKK3 also interacts with BRCA1. Knocking down BRCA1 resulted in inhibited MEKK3 kinase activity. The drug paclitaxel induces MEKK3 activity and it requires functional BRCA1 to do it. It was observed that in a breast cancer cell line BRCA1-deficient (HCC1937), paclitaxel was unable to activate MEKK3. Paclitaxel may be inducing stress-response through the MEKK3/JNK/p38/MAPK pathway, but not in mutated BRCA1 cells. [9]

Related Research Articles

A mitogen-activated protein kinase is a type of protein kinase that is specific to the amino acids serine and threonine. MAPKs are involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines. They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis.

Mitogen Activated Protein (MAP) kinase kinase kinase, MAPKKK is a serine/threonine-specific protein kinase which acts upon MAP kinase kinase. Subsequently, MAP kinase kinase activates MAP kinase. Several types of MAPKKK can exist but are mainly characterized by the MAP kinases they activate. MAPKKKs are stimulated by a large range of stimuli, primarily environmental and intracellular stressors. MAPKKK is responsible for various cell functions such as cell proliferation, cell differentiation, and apoptosis. The duration and intensity of signals determine which pathway ensues. Additionally, the use of protein scaffolds helps to place the MAPKKK in close proximity with its substrate to allow for a reaction. Lastly, because MAPKKK is involved in a series of several pathways, it has been used as a therapeutic target for cancer, amyloidosis, and neurodegenerative diseases. In humans, there are at least 19 genes which encode MAP kinase kinase kinases:

In molecular biology, extracellular signal-regulated kinases (ERKs) or classical MAP kinases are widely expressed protein kinase intracellular signalling molecules that are involved in functions including the regulation of meiosis, mitosis, and postmitotic functions in differentiated cells. Many different stimuli, including growth factors, cytokines, virus infection, ligands for heterotrimeric G protein-coupled receptors, transforming agents, and carcinogens, activate the ERK pathway.

<span class="mw-page-title-main">RAF kinase</span>

RAF kinases are a family of three serine/threonine-specific protein kinases that are related to retroviral oncogenes. The mouse sarcoma virus 3611 contains a RAF kinase-related oncogene that enhances fibrosarcoma induction. RAF is an acronym for Rapidly Accelerated Fibrosarcoma.

<span class="mw-page-title-main">U0126</span> Molecule

U0126 is a highly selective inhibitor of both MEK1 and MEK2, a type of MAPK/ERK kinase. U0126 was found to functionally antagonize AP-1 transcriptional activity via noncompetitive inhibition of the dual specificity kinase MEK with IC50 of 72 nM for MEK1 and 58 nM for MEK2. U0126 inhibited anchorage-independent growth of Ki-ras-transformed rat fibroblasts by simultaneously blocking both extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR)-p70(S6K) pathways. The effects of U0126 on the growth of eight human breast cancer cell lines shown that U0126 selectively repressed anchorage-independent growth of MDA-MB231 and HBC4 cells, two lines with constitutively activated ERK. Loss of contact with substratum triggers apoptosis in many normal cell types, a phenomenon termed anoikis. U0126 sensitized MDA-MB231 and HBC4 to anoikis, i.e., upon treatment with U0126, cells deprived of anchorage entered apoptosis.

<span class="mw-page-title-main">ASK1</span> Protein-coding gene in the species Homo sapiens

Apoptosis signal-regulating kinase 1 (ASK1) also known as mitogen-activated protein kinase 5 (MAP3K5) is a member of MAP kinase family and as such a part of mitogen-activated protein kinase pathway. It activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases in a Raf-independent fashion in response to an array of stresses such as oxidative stress, endoplasmic reticulum stress and calcium influx. ASK1 has been found to be involved in cancer, diabetes, rheumatoid arthritis, cardiovascular and neurodegenerative diseases.

<span class="mw-page-title-main">MAPK1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 1, also known as ERK2, is an enzyme that in humans is encoded by the MAPK1 gene.

<span class="mw-page-title-main">MAPK3</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 3, also known as p44MAPK and ERK1, is an enzyme that in humans is encoded by the MAPK3 gene.

<span class="mw-page-title-main">MAP2K1</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 1 is an enzyme that in humans is encoded by the MAP2K1 gene.

<span class="mw-page-title-main">MAP2K2</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 2 is an enzyme that in humans is encoded by the MAP2K2 gene. It is more commonly known as MEK2, but has many alternative names including CFC4, MKK2, MAPKK2 and PRKMK2.

<span class="mw-page-title-main">MAP2K4</span> Protein-coding gene in the species Homo sapiens

Dual-specificity mitogen-activated protein kinase kinase 4 is an enzyme that in humans is encoded by the MAP2K4 gene.

<span class="mw-page-title-main">ELK1</span> Protein-coding gene in humans

ETS Like-1 protein Elk-1 is a protein that in humans is encoded by the ELK1. Elk-1 functions as a transcription activator. It is classified as a ternary complex factor (TCF), a subclass of the ETS family, which is characterized by a common protein domain that regulates DNA binding to target sequences. Elk1 plays important roles in various contexts, including long-term memory formation, drug addiction, Alzheimer's disease, Down syndrome, breast cancer, and depression.

<span class="mw-page-title-main">MAPK7</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 7 also known as MAP kinase 7 is an enzyme that in humans is encoded by the MAPK7 gene.

<span class="mw-page-title-main">MAP2K6</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 6 also known as MAP kinase kinase 6 or MAPK/ERK kinase 6 is an enzyme that in humans is encoded by the MAP2K6 gene, on chromosome 17.

<span class="mw-page-title-main">MAP2K3</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 3 is an enzyme that in humans is encoded by the MAP2K3 gene.

<span class="mw-page-title-main">MAP3K1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is a signal transduction enzyme that in humans is encoded by the autosomal MAP3K1 gene.

<span class="mw-page-title-main">MAP3K8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 8 is an enzyme that in humans is encoded by the MAP3K8 gene.

<span class="mw-page-title-main">MAP2K5</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 5 is an enzyme that in humans is encoded by the MAP2K5 gene.

<span class="mw-page-title-main">MAP3K4</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 4 is an enzyme that in humans is encoded by the MAP3K4 gene.

<span class="mw-page-title-main">MAP3K2</span> Protein-coding gene in the species Homo sapiens

Mitogen-Activated Protein Kinase Kinase Kinase 2 also known as MEKK2 is an enzyme that in humans is encoded by the MAP3K2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198909 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020700 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ellinger-Ziegelbauer H, Brown K, Kelly K, Siebenlist U (Jan 1997). "Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative". The Journal of Biological Chemistry. 272 (5): 2668–74. doi: 10.1074/jbc.272.5.2668 . PMID   9006902.
  6. MAP3K3 in GeneCards – The Human Gene Compendium. https://www.genecards.org/cgi-bin/carddisp.pl?gene=MAP3K3
  7. 1 2 Craig EA, Stevens MV, Vaillancourt RR, et al. (2008). "MAP3Ks as central regulators of cell fate during development". Developmental Dynamics. 237 (11): 3102–14. doi: 10.1002/dvdy.21750 . PMID   18855897. S2CID   876964.
  8. "Entrez Gene: MAP3K3 mitogen-activated protein kinase kinase kinase 3".
  9. 1 2 Gilmore PM, McCabe N, Quinn JE, Kennedy RD, Gorski JJ, Andrews HN, McWilliams S, Carty M, Mullan PB, Duprex WP, Liu ET, Johnston PG, Harkin DP (Jun 2004). "BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase kinase kinase 3". Cancer Research. 64 (12): 4148–54. doi: 10.1158/0008-5472.CAN-03-4080 . PMID   15205325.
  10. 1 2 Samanta AK, Huang HJ, Le XF, Mao W, Lu KH, Bast RC, Liao WS (Sep 2009). "MEKK3 expression correlates with nuclear factor kappa B activity and with expression of antiapoptotic genes in serous ovarian carcinoma". Cancer. 115 (17): 3897–908. doi:10.1002/cncr.24445. PMC   3061353 . PMID   19517469.
  11. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, Glassman M, Lee JD, Yan C, Berk BC, Abe J (Jun 2002). "Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression". Circulation Research. 90 (11): 1222–30. doi: 10.1161/01.RES.0000021127.83364.7D . PMID   12065326.
  12. Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL (Feb 2001). "MEKK2 associates with the adapter protein Lad/RIBP and regulates the MEK5-BMK1/ERK5 pathway". The Journal of Biological Chemistry. 276 (7): 5093–100. doi: 10.1074/jbc.M003719200 . PMID   11073940.
  13. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (Feb 2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nature Cell Biology. 6 (2): 97–105. doi:10.1038/ncb1086. PMID   14743216. S2CID   11683986.
  14. Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR (Feb 1998). "14-3-3 proteins interact with specific MEK kinases". The Journal of Biological Chemistry. 273 (6): 3476–83. doi: 10.1074/jbc.273.6.3476 . PMID   9452471.
  15. Slattery ML, Lundgreen A, Wolff RK (2012). "MAP kinase genes and colon and rectal cancer". Carcinogenesis. 33 (12): 2398–408. doi:10.1093/carcin/bgs305. PMC   3510742 . PMID   23027623.

Further reading