MAPK7

Last updated
MAPK7
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MAPK7 , BMK1, ERK4, ERK5, PRKM7, mitogen-activated protein kinase 7
External IDs OMIM: 602521 MGI: 1346347 HomoloGene: 2060 GeneCards: MAPK7
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002749
NM_139032
NM_139033
NM_139034

RefSeq (protein)

NP_002740
NP_620601
NP_620602
NP_620603

Location (UCSC) Chr 17: 19.38 – 19.38 Mb Chr 11: 61.49 – 61.49 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Mitogen-activated protein kinase 7 also known as MAP kinase 7 is an enzyme that in humans is encoded by the MAPK7 gene. [5] [6]

Function

MAPK7 is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). It is involved in the downstream signaling processes of various receptor molecules including receptor tyrosine kinases, and G protein-coupled receptors. In response to extracellular signals, this kinase translocates to the cell nucleus, where it regulates gene expression by phosphorylating, and activating different transcription factors. Four alternatively spliced transcript variants of this gene encoding two distinct isoforms have been reported. [7]

MAPK7 is also critical for cardiovascular development [8] and is essential for endothelial cell function. [9] [10]

Interactions

MAPK7 has been shown to interact with:

ERK5 (= MAPK7) Inhibitors

XMD8-92 was one of the first described ERK5 inhibitors and was used in several pharmacological studies as tool compound. However, XMD8-92 hits BRD4 as an off-target [17] leading to false or inconclusive results. Consequently, ERK5 inhibitors with improved selectivity (void of the BRD4 off-target effect) such as AX15836 [17] and BAY-885 [18] were developed and should preferably be used for future pharmacological studies. BAY-885 fulfils the quality criteria for a 'Donated Chemical Probe' as defined by the Structural Genomics Consortium. [19] In 2020, it was demonstrated that ATP-competitive inhibitors paradoxically activate ERK5 signalling. [20]

ERK5 (= MAPK7) Degrader

Based on a close analog of the ERK5 inhibitor BAY-885 [18] the Proteolysis Targeting Chimera [21] (PROTAC) INY-06-061 [22] was developed which allows to compare the phenotypes resulting from ERK5 inhibition versus degradation.

Related Research Articles

A mitogen-activated protein kinase is a type of protein kinase that is specific to the amino acids serine and threonine. MAPKs are involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammatory cytokines. They regulate cell functions including proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis.

The MAPK/ERK pathway is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell.

p38 mitogen-activated protein kinases are a class of mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, apoptosis and autophagy. Persistent activation of the p38 MAPK pathway in muscle satellite cells due to ageing, impairs muscle regeneration.

<span class="mw-page-title-main">RAF kinase</span>

RAF kinases are a family of three serine/threonine-specific protein kinases that are related to retroviral oncogenes. The mouse sarcoma virus 3611 contains a RAF kinase-related oncogene that enhances fibrosarcoma induction. RAF is an acronym for Rapidly Accelerated Fibrosarcoma.

<span class="mw-page-title-main">MAPK1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 1, also known as ERK2, is an enzyme that in humans is encoded by the MAPK1 gene.

<span class="mw-page-title-main">MAPK14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.

<span class="mw-page-title-main">MAP2K4</span> Protein-coding gene in the species Homo sapiens

Dual-specificity mitogen-activated protein kinase kinase 4 is an enzyme that in humans is encoded by the MAP2K4 gene.

<span class="mw-page-title-main">MAPKAPK2</span> Protein-coding gene in the species Homo sapiens

MAP kinase-activated protein kinase 2 is an enzyme that in humans is encoded by the MAPKAPK2 gene.

<span class="mw-page-title-main">DUSP1</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein phosphatase 1 is an enzyme that in humans is encoded by the DUSP1 gene.

<span class="mw-page-title-main">MAP2K6</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 6 also known as MAP kinase kinase 6 or MAPK/ERK kinase 6 is an enzyme that in humans is encoded by the MAP2K6 gene, on chromosome 17.

<span class="mw-page-title-main">MEF2C</span> Protein-coding gene in the species Homo sapiens

Myocyte-specific enhancer factor 2C also known as MADS box transcription enhancer factor 2, polypeptide C is a protein that in humans is encoded by the MEF2C gene. MEF2C is a transcription factor in the Mef2 family.

<span class="mw-page-title-main">MAP3K3</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 3 is an enzyme that in humans is encoded by the MAP3K3 gene, which is located on the long arm of chromosome 17 (17q23.3).

<span class="mw-page-title-main">RPS6KA1</span> Enzyme

Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene.

<span class="mw-page-title-main">MEF2D</span> Protein-coding gene in the species Homo sapiens

Myocyte-specific enhancer factor 2D is a protein that in humans is encoded by the MEF2D gene.

<span class="mw-page-title-main">MAP2K5</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 5 is an enzyme that in humans is encoded by the MAP2K5 gene.

<span class="mw-page-title-main">MAP3K2</span> Protein-coding gene in the species Homo sapiens

Mitogen-Activated Protein Kinase Kinase Kinase 2 also known as MEKK2 is an enzyme that in humans is encoded by the MAP3K2 gene.

<span class="mw-page-title-main">MAPK6</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 6 is an enzyme that in humans is encoded by the MAPK6 gene.

<span class="mw-page-title-main">MAPK4</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 4 is an enzyme that in humans is encoded by the MAPK4 gene.

<span class="mw-page-title-main">MAPK15</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 15, also known as MAPK15, ERK7, or ERK8, is an enzyme that in humans is encoded by the MAPK15 gene.

<span class="mw-page-title-main">MAPK phosphatase</span>

MAPK phosphatases (MKPs) are the largest class of phosphatases involved in down-regulating Mitogen-activated protein kinases (MAPK) signaling. MAPK signalling pathways regulate multiple features of development and homeostasis. This can involve gene regulation, cell proliferation, programmed cell death and stress responses. MAPK phosphatases are therefore important regulator components of these pathways.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000166484 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000001034 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Purandare SM, Lee JD, Patel PI (March 1999). "Assignment of big MAP kinase (PRKM7) to human chromosome 17 band p11.2 with somatic cell hybrids". Cytogenetics and Cell Genetics. 83 (3–4): 258–259. doi:10.1159/000015199. PMID   10072598. S2CID   31186896.
  6. 1 2 Zhou G, Bao ZQ, Dixon JE (May 1995). "Components of a new human protein kinase signal transduction pathway". The Journal of Biological Chemistry. 270 (21): 12665–12669. doi: 10.1074/jbc.270.21.12665 . PMID   7759517.
  7. "Entrez Gene: MAPK7 mitogen-activated protein kinase 7".
  8. Hayashi M, Lee JD (December 2004). "Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice". Journal of Molecular Medicine. 82 (12): 800–808. doi:10.1007/s00109-004-0602-8. PMID   15517128. S2CID   8499230.
  9. Roberts OL, Holmes K, Müller J, Cross DA, Cross MJ (December 2009). "ERK5 and the regulation of endothelial cell function". Biochemical Society Transactions. 37 (Pt 6): 1254–1259. doi:10.1042/BST0371254. PMID   19909257.
  10. Roberts OL, Holmes K, Müller J, Cross DA, Cross MJ (September 2010). "ERK5 is required for VEGF-mediated survival and tubular morphogenesis of primary human microvascular endothelial cells". Journal of Cell Science. 123 (Pt 18): 3189–3200. doi: 10.1242/jcs.072801 . PMID   20736307.
  11. English JM, Pearson G, Hockenberry T, Shivakumar L, White MA, Cobb MH (October 1999). "Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control". The Journal of Biological Chemistry. 274 (44): 31588–31592. doi: 10.1074/jbc.274.44.31588 . PMID   10531364.
  12. Cameron SJ, Malik S, Akaike M, Lerner-Marmarosh N, Yan C, Lee JD, et al. (May 2003). "Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation". The Journal of Biological Chemistry. 278 (20): 18682–18688. doi: 10.1074/jbc.M213283200 . PMID   12637502.
  13. 1 2 Yang CC, Ornatsky OI, McDermott JC, Cruz TF, Prody CA (October 1998). "Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1". Nucleic Acids Research. 26 (20): 4771–4777. doi:10.1093/nar/26.20.4771. PMC   147902 . PMID   9753748.
  14. Buschbeck M, Eickhoff J, Sommer MN, Ullrich A (August 2002). "Phosphotyrosine-specific phosphatase PTP-SL regulates the ERK5 signaling pathway". The Journal of Biological Chemistry. 277 (33): 29503–29509. doi: 10.1074/jbc.M202149200 . PMID   12042304.
  15. Hayashi M, Tapping RI, Chao TH, Lo JF, King CC, Yang Y, Lee JD (March 2001). "BMK1 mediates growth factor-induced cell proliferation through direct cellular activation of serum and glucocorticoid-inducible kinase". The Journal of Biological Chemistry. 276 (12): 8631–8634. doi: 10.1074/jbc.C000838200 . PMID   11254654.
  16. Zheng Q, Yin G, Yan C, Cavet M, Berk BC (March 2004). "14-3-3beta binds to big mitogen-activated protein kinase 1 (BMK1/ERK5) and regulates BMK1 function". The Journal of Biological Chemistry. 279 (10): 8787–8791. doi: 10.1074/jbc.M310212200 . PMID   14679215.
  17. 1 2 Lin EC, Amantea CM, Nomanbhoy TK, Weissig H, Ishiyama J, Hu Y, et al. (October 2016). "ERK5 kinase activity is dispensable for cellular immune response and proliferation". Proceedings of the National Academy of Sciences of the United States of America. 113 (42): 11865–11870. Bibcode:2016PNAS..11311865L. doi: 10.1073/pnas.1609019113 . PMC   5081620 . PMID   27679845.
  18. 1 2 Nguyen D, Lemos C, Wortmann L, Eis K, Holton SJ, Boemer U, et al. (January 2019). "Discovery and Characterization of the Potent and Highly Selective (Piperidin-4-yl)pyrido[3,2- d]pyrimidine Based in Vitro Probe BAY-885 for the Kinase ERK5". Journal of Medicinal Chemistry. 62 (2): 928–940. doi:10.1021/acs.jmedchem.8b01606. PMID   30563338. S2CID   56478089.
  19. "Donated chemical probes". SGC. 2018-06-12. Retrieved 2023-07-26.
  20. "Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…". Biochemical Society Transactions.
  21. Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM (September 2020). "Prey for the Proteasome: Targeted Protein Degradation-A Medicinal Chemist's Perspective". Angewandte Chemie. 59 (36): 15448–15466. doi:10.1002/anie.202004310. PMC   7496094 . PMID   32428344.
  22. You I, Donovan KA, Krupnick NM, Boghossian AS, Rees MG, Ronan MM, et al. (November 2022). "Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation". Cell Chemical Biology. 29 (11): 1630–1638.e7. doi:10.1016/j.chembiol.2022.09.004. PMC  9675722. PMID   36220104.

Further reading