Solar eclipse of April 20, 2023

Last updated
Solar eclipse of April 20, 2023
Solar Eclipse 2023-4-20, Magetan, Indonesia, 10.51 WIB (cropped2).jpg
Partial from Magetan, Indonesia
SE2023Apr20H.png
Map
Type of eclipse
NatureHybrid
Gamma −0.3952
Magnitude 1.0132
Maximum eclipse
Duration76 s (1 min 16 s)
Coordinates 9°36′S125°48′E / 9.6°S 125.8°E / -9.6; 125.8
Max. width of band49 km (30 mi)
Times (UTC)
Greatest eclipse4:17:56
References
Saros 129 (52 of 80)
Catalog # (SE5000) 9559

A hybrid solar eclipse occurred on Thursday, April 20, 2023. A solar eclipse occurs when the Moon passes between Earth and the Sun thereby totally or partly obscuring the Sun for a viewer on Earth. A hybrid solar eclipse is a rare type of solar eclipse that changes its appearance from annular to total and back as the Moon's shadow moves across the Earth's surface. [1] Totality occurs in a narrow path across the surface of the Earth, with the partial solar eclipse visible over a surrounding region thousands of kilometers wide. [2] Hybrid solar eclipses are extremely rare, occurring in only 3.1% of solar eclipses in the 21st century. [3]

Contents

Totality for this eclipse was visible in the North West Cape peninsula and Barrow Island in Western Australia, eastern parts of East Timor, as well as Damar Island and parts of the province of Papua in Indonesia. [4] More than 20,000 people watched the eclipse from the town of Exmouth on Western Australia's North West Cape. [5] Providing infrastructure and services for the visitors (Exmouth's normal population is less than 3,000) cost the State Government of Western Australia A$20 million (US$13.5 million). The date marked a significant moment of astrotourism and tourism in Western Australia. [6]

Portions of the eclipse's path near sunrise and sunset were annular. With the eclipse occurring 4.1 days after perigee (April 16), the Moon's apparent diameter was 1.02% larger than average. [7]

Images

SE2023Apr20H.gif
Animated path of the eclipse
Solar Eclipse of April 20, 2023 viewed from Himawari 9.gif
Animation of images from Himawari 9 showing the Moon's shadow moving across the Earth.

Australia

East Timor

Indonesia

Malaysia


Philippines

Vietnam

Tzolkinex

Half-Saros cycle

Tritos

Solar Saros 129

Inex

Triad

Eclipses of 2023

Solar eclipses of 2022–2025

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [8]

Solar eclipse series sets from 2022 to 2025
Ascending node Descending node
SarosMapGammaSarosMapGamma
119
30 April 2022 Partial Solar Eclipse (CTIO 20220430 Eclipse-Solar-Partial DMunizaga-CC).tiff
Partial from CTIO, Chile
2022 April 30
SE2022Apr30P.png
Partial
−1.19008124
Sun eclipse 25 oct 2022 in Saratov.jpg
Partial from Saratov, Russia
2022 October 25
SE2022Oct25P.png
Partial
1.07014
129
2023-04-20 Solar Eclipse in Timor-Leste 6.jpg
Total from
East Timor
2023 April 20
SE2023Apr20H.png
Hybrid
−0.39515134
Ring of fire 2023 (cropped).jpg
Annular from
Campeche, Mexico
2023 October 14
SE2023Oct14A.png
Annular
0.37534
139
Solar eclipse of April 2024 from Indianapolis.jpg
Total from
Indianapolis, USA
2024 April 8
SE2024Apr08T.png
Total
0.34314144 2024 October 2
SE2024Oct02A.png
Annular
−0.35087
149 2025 March 29
SE2025Mar29P.png
Partial
1.04053154 2025 September 21
SE2025Sep21P.png
Partial
−1.06509

Saros 129

It is a part of Saros cycle 129, repeating every 18 years, 11 days, containing 80 events. The series started with partial solar eclipse on October 3, 1103. It contains annular eclipses on May 6, 1464 through March 18, 1969, hybrid eclipses from March 29, 1987 through April 20, 2023 and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. The longest duration of totality was 3 minutes, 43 seconds on June 25, 2131 . All eclipses in this series occurs at the Moon’s ascending node. [9]

Series members 46–56 occur between 1901 and 2100:
464748
SE1915Feb14A.png
February 14, 1915
SE1933Feb24A.png
February 24, 1933
SE1951Mar07A.png
March 7, 1951
495051
SE1969Mar18A.png
March 18, 1969
SE1987Mar29H.png
March 29, 1987
SE2005Apr08H.png
April 8, 2005
525354
SE2023Apr20H.png
April 20, 2023
SE2041Apr30T.png
April 30, 2041
SE2059May11T.png
May 11, 2059
5556
SE2077May22T.png
May 22, 2077
SE2095Jun02T.png
June 2, 2095

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events, progressing from south to north between July 1, 2000 and July 1, 2076
July 1–2April 19–20February 5–7November 24–25September 12–13
117119121123125
SE2000Jul01P.png
July 1, 2000
SE2004Apr19P.png
April 19, 2004
SE2008Feb07A.png
February 7, 2008
SE2011Nov25P.png
November 25, 2011
SE2015Sep13P.png
September 13, 2015
127129131133135
SE2019Jul02T.png
July 2, 2019
SE2023Apr20H.png
April 20, 2023
SE2027Feb06A.png
February 6, 2027
SE2030Nov25T.png
November 25, 2030
SE2034Sep12A.png
September 12, 2034
137139141143145
SE2038Jul02A.png
July 2, 2038
SE2042Apr20T.png
April 20, 2042
SE2046Feb05A.png
February 5, 2046
SE2049Nov25H.png
November 25, 2049
SE2053Sep12T.png
September 12, 2053
147149151153155
SE2057Jul01A.png
July 1, 2057
SE2061Apr20T.png
April 20, 2061
SE2065Feb05P.png
February 5, 2065
SE2068Nov24P.png
November 24, 2068
SE2072Sep12T.png
September 12, 2072
157159161163165
SE2076Jul01P.png
July 1, 2076

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 29, 2014</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on Tuesday, April 29, 2014. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The center of the Moon's shadow missed the Earth's South Pole, but the partial eclipse was visible from parts of Antarctica and Australia, and an annular eclipse was visible from a small part of Antarctica.

<span class="mw-page-title-main">Solar eclipse of November 13, 2012</span> 21st-century total solar eclipse

A total solar eclipse took place on 13–14 November 2012 (UTC). Because it crossed the International Date Line it began in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. Its greatest magnitude was 1.0500, occurring only 12 hours before perigee, with greatest eclipse totality lasting just over four minutes. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> 21st-century total solar eclipse

A total solar eclipse occurred at the ascending node of the Moon's orbit on Tuesday, July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 33 seconds visible from the Pacific Ocean. The Moon was only 2.4 days before perigee, making it fairly large.

<span class="mw-page-title-main">Solar eclipse of May 10, 2013</span> 21st-century annular solar eclipse

An annular solar eclipse took place at the Moon's descending node of the orbit on May 9–10 (UTC), 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 14, 2001</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on December 14, 2001. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. It was visible across the Pacific Ocean, southern Costa Rica, northern Nicaragua and San Andrés Island, Colombia. The central shadow passed just south of Hawaii in early morning and ended over Central America near sunset.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node on 3 November 2013. It was a hybrid eclipse of the Sun with a magnitude of 1.0159, with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse, and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 2017 annular solar eclipse in South America and Africa

An annular solar eclipse took place on February 26, 2017. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of July 22, 1990</span> 20th-century total solar eclipse

A total solar eclipse occurred on Sunday, July 22, 1990. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southern Finland, the Soviet Union, and eastern Andreanof Islands and Amukta of Alaska.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on Wednesday, May 30, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> 20th-century total solar eclipse

A total solar eclipse occurred on November 22, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> 20th-century total solar eclipse

A total solar eclipse occurred on September 9, 1904. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

<span class="mw-page-title-main">Solar eclipse of June 30, 1992</span> 20th-century total solar eclipse

A total solar eclipse occurred on Tuesday, June 30, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southeastern Uruguay and southern tip of Rio Grande do Sul, Brazil.

<span class="mw-page-title-main">Solar eclipse of October 12, 1977</span> 20th-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node of the orbit on Wednesday, October 12, 1977. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Pacific Ocean, Colombia and Venezuela.

<span class="mw-page-title-main">Solar eclipse of February 4, 1981</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on February 4–5, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This annular solar eclipse was large because the Moon covered 99.4% of the Sun, with a path width of only 25 km . It was visible in Australia, crossing over Tasmania and southern Stewart Island of New Zealand near sunrise on February 5 (Thursday), and ended at sunset over western South America on February 4 (Wednesday). Occurring only 4 days before perigee, the moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 20, 1963</span> 20th-century total solar eclipse

A total solar eclipse occurred on July 20, 1963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is at least the same size as the Sun's or larger, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over the surrounding region thousands of kilometres wide. Totality was visible from Hokkaido in Japan and Kuril Islands in Soviet Union on July 21, and Alaska, and Maine in the United States and also Canada on July 20. Astronomer Charles H. Smiley observed the eclipse from a U.S. Air Force F-104D Starfighter supersonic aircraft that was "racing the Moon's shadow" at 1,300 mph (2,100 km/h) extending the duration of totality to 4 minutes 3 seconds. The Moon was 375,819 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of April 8, 1959</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on April 8, 1959. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, southeastern tip of Milne Bay Province in the Territory of Papua New Guinea, British Solomon Islands, Gilbert and Ellice Islands, Tokelau, and Swains Island in American Samoa.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of October 4, 2070</span> Future annular solar eclipse

An annular solar eclipse will occur on Saturday, October 4, 2070. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur on Sunday, September 22, 2052. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2077</span> Future total solar eclipse

A total solar eclipse will occur on Saturday, May 22, 2077. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

References

  1. "Lunar eclipse 2023: The rare celestial event which will not happen again till 2042". India Today (Press release). Retrieved 27 April 2023.
  2. "How to view this week's rare hybrid eclipse". CNN. Retrieved 27 April 2023.
  3. "Hybrid solar eclipse: Everything you need to know about the rare and strange phenomenon". Space.com . 20 November 2022. Archived from the original on 9 January 2023. Retrieved 9 January 2023.
  4. Hybrid Solar Eclipse of 2023 Apr 20 Archived 2021-01-17 at the Wayback Machine , National Aeronautics and Space Administration
  5. "Solar eclipse chasers descend on tiny Western Australian town to experience 'wonders of the universe'". The Guardian . 20 April 2023. Archived from the original on 20 April 2023.
  6. Marcus, Lilit (19 April 2023). "How a solar eclipse could change this small Australian town forever". CNN. Archived from the original on 21 April 2023. Retrieved 20 April 2023.
  7. "Solar Eclipse 2023 Date, Time First Solar Eclipse of 2023". gotopnews.com. 20 April 2023. Archived from the original on 20 April 2023.
  8. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. Espenak, F. "NASA Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.