Solar eclipse of October 25, 2022

Last updated
Solar eclipse of October 25, 2022
Sun eclipse 25 oct 2022 in Saratov.jpg
Partial from Saratov, Russia
SE2022Oct25P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0701
Magnitude 0.8623
Maximum eclipse
Coordinates 61°36′N77°24′E / 61.6°N 77.4°E / 61.6; 77.4
Times (UTC)
Greatest eclipse11:01:20
References
Saros 124 (55 of 73)
Catalog # (SE5000) 9558

The solar eclipse of October 25, 2022, was a partial solar eclipse [1] [2] [3] [4] visible from Europe, the Urals and Western Siberia, Central Asia, Western Asia, South Asia and from the north-east of Africa. The maximal phase of the partial eclipse occurred on the West Siberian Plain in Russia near Nizhnevartovsk, where more than 82% of the Sun was eclipsed by the Moon. In India, the Sun was eclipsed during sunset ranging from 58% in the north and around 2% in the south. From Western Europe it appeared to be around 15-30% eclipsed. It was visible between 08:58 UTC, the greatest point of eclipse occurred at 11:00 UTC and it ended at 13:02 UTC.

Contents

A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Eclipses of 2022

Saros 124

Solar saros 124, repeating every about 18 years and 11 days, contains 73 events. The series started with partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211, to September 22, 1968, and a hybrid solar eclipse on October 3, 1986. The series ends at member 73 as a partial eclipse on May 11, 2347. The longest total eclipse occurred on May 3, 1734, at 5 minutes and 46 seconds. [5]

Series members 43–59 occur between 1801 and 2100:
434445
SE1806Jun16T.png
June 16, 1806
SE1824Jun26T.png
June 26, 1824
SE1842Jul08T.png
July 8, 1842
464748
SE1860Jul18T.png
July 18, 1860
SE1878Jul29T.png
July 29, 1878
SE1896Aug09T.png
August 9, 1896
495051
SE1914Aug21T.png
August 21, 1914
SE1932Aug31T.png
August 31, 1932
SE1950Sep12T.png
September 12, 1950
525354
SE1968Sep22T.png
September 22, 1968
SE1986Oct03H.png
October 3, 1986
SE2004Oct14P.png
October 14, 2004
555657
SE2022Oct25P.png
October 25, 2022
SE2040Nov04P.png
November 4, 2040
SE2058Nov16P.png
November 16, 2058
5859
SE2076Nov26P.png
November 26, 2076
SE2094Dec07P.png
December 7, 2094

Solar eclipses of 2022–2025

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]

Solar eclipse series sets from 2022 to 2025
Ascending node Descending node
SarosMapGammaSarosMapGamma
119
30 April 2022 Partial Solar Eclipse (CTIO 20220430 Eclipse-Solar-Partial DMunizaga-CC).tiff
Partial from CTIO, Chile
2022 April 30
SE2022Apr30P.png
Partial
−1.19008124
Sun eclipse 25 oct 2022 in Saratov.jpg
Partial from Saratov, Russia
2022 October 25
SE2022Oct25P.png
Partial
1.07014
129
2023-04-20 Solar Eclipse in Timor-Leste 6.jpg
Total from
East Timor
2023 April 20
SE2023Apr20H.png
Hybrid
−0.39515134
Ring of fire 2023 (cropped).jpg
Annular from
Campeche, Mexico
2023 October 14
SE2023Oct14A.png
Annular
0.37534
139 2024 April 8
SE2024Apr08T.png
Total
0.34314144 2024 October 2
SE2024Oct02A.png
Annular
−0.35087
149 2025 March 29
SE2025Mar29P.png
Partial
1.04053154 2025 September 21
SE2025Sep21P.png
Partial
−1.06509

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between June 1, 2011 and June 1, 2087
May 31 – June 1March 19–20January 5–6October 24–25August 12–13
118120122124126
SE2011Jun01P.png
June 1, 2011
SE2015Mar20T.png
March 20, 2015
SE2019Jan06P.png
January 6, 2019
SE2022Oct25P.png
October 25, 2022
SE2026Aug12T.png
August 12, 2026
128130132134136
SE2030Jun01A.png
June 1, 2030
SE2034Mar20T.png
March 20, 2034
SE2038Jan05A.png
January 5, 2038
SE2041Oct25A.png
October 25, 2041
SE2045Aug12T.png
August 12, 2045
138140142144146
SE2049May31A.png
May 31, 2049
SE2053Mar20A.png
March 20, 2053
SE2057Jan05T.png
January 5, 2057
SE2060Oct24A.png
October 24, 2060
SE2064Aug12T.png
August 12, 2064
148150152154156
SE2068May31T.png
May 31, 2068
SE2072Mar19P.png
March 19, 2072
SE2076Jan06T.png
January 6, 2076
SE2079Oct24A.png
October 24, 2079
SE2083Aug13P.png
August 13, 2083
158160162164166
SE2087Jun01P.png
June 1, 2087
SE2098Oct24P.png
October 24, 2098

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> 21st-century total solar eclipse

A total solar eclipse occurred on March 29, 2006. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

<span class="mw-page-title-main">Solar eclipse of January 26, 2009</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of the orbit on Monday, January 26, 2009. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. It had a magnitude of 0.9282 and was visible from a narrow corridor beginning in the south Atlantic Ocean and sweeping eastward 900 km south of Africa, slowly curving northeast through the Indian Ocean. Its first landfall was in the Cocos Islands followed by southern Sumatra and western Java. It continued somewhat more easterly across central Borneo, across the northwestern edge of Celebes, then ending just before Mindanao, Philippines. The duration of annularity at greatest eclipse lasted 7 minutes, 53.58 seconds, but at greatest duration lasted 7 minutes, 56.05 seconds.

<span class="mw-page-title-main">Solar eclipse of April 29, 2014</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on Tuesday, April 29, 2014. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The center of the Moon's shadow missed the Earth's South Pole, but the partial eclipse was visible from parts of Antarctica and Australia, and an annular eclipse was visible from a small part of Antarctica.

<span class="mw-page-title-main">Solar eclipse of March 9, 2016</span> 21st-century total solar eclipse

A total solar eclipse took place at the Moon's descending node of the orbit on March 8–9, 2016. If viewed from east of the International Date Line, the eclipse took place on March 8 (Tuesday) and elsewhere on March 9 (Wednesday). A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse of March 8–9, 2016 had a magnitude of 1.0450 visible across an area of Pacific Ocean, which started in the Indian Ocean, and ended in the northern Pacific Ocean.

<span class="mw-page-title-main">Solar eclipse of January 15, 2010</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of the orbit on January 15, 2010, with a magnitude of 0.91903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. It was the longest annular solar eclipse of the millennium, and the longest until December 23, 3043, with the length of maximum eclipse of 11 minutes, 7.8 seconds, and the longest duration of 11 minutes, 10.7 seconds. This is about 4 minutes longer than total solar eclipses could ever get.

<span class="mw-page-title-main">Solar eclipse of January 4, 2011</span> 21st-century partial solar eclipse

The solar eclipse of January 4, 2011 was a partial eclipse of the Sun that was visible after sunrise over most of Europe, northwestern and South Asia. It ended at sunset over eastern Asia. It was visible as a minor partial eclipse over northern Africa and the Arabian peninsula. The eclipse belonged to Saros 151 and was number 14 of 72 eclipses in the series.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> 21st-century total solar eclipse

A total solar eclipse occurred at the ascending node of the Moon's orbit on Tuesday, July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 33 seconds visible from the Pacific Ocean. The Moon was only 2.4 days before perigee, making it fairly large.

<span class="mw-page-title-main">Solar eclipse of May 10, 2013</span> 21st-century annular solar eclipse

An annular solar eclipse took place at the Moon's descending node of the orbit on May 9–10 (UTC), 2013, with a magnitude of 0.9544. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 19, 2007</span> 21st-century partial solar eclipse

A partial solar eclipse occurred on March 18–19, 2007. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 7, 2008</span>

An annular solar eclipse occurred at the Moon's ascending node of the orbit on February 7, 2008. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7 days after apogee and 6.9 days before perigee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> 21st-century total solar eclipse

A total solar eclipse occurred at the Moon's ascending node on 3 November 2013. It was a hybrid eclipse of the Sun with a magnitude of 1.0159, with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse, and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

<span class="mw-page-title-main">Solar eclipse of September 1, 2016</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on September 1, 2016. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. In this case, annularity was observed in Gabon, Congo, Democratic Republic of the Congo, Tanzania, Mozambique, Madagascar, and Reunion.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse took place on February 15, 2018. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 11, 2018</span> 21st-century partial solar eclipse

The solar eclipse of August 11, 2018 was a partial solar eclipse that was visible in the north of North America, Greenland, Northern Europe and north-eastern Asia.

<span class="mw-page-title-main">Solar eclipse of June 21, 2020</span> 21st-century annular solar eclipse

An annular solar eclipse occurred on Sunday, June 21, 2020. An annular solar eclipse is a solar eclipse whose presentation looks like a ring, or annulus; it occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most, but not all, of the Sun's light. In this instance, the Moon's apparent diameter was 0.6% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of June 10, 2021</span> Annular solar eclipse

An annular solar eclipse occurred on Thursday, June 10, 2021, when the Moon passed between Earth and the Sun, thereby partly obscuring the image of the Sun for a viewer on Earth. During the eclipse, the Moon's apparent diameter was smaller than the Sun's, so it caused the Sun to look like an annulus. The annular eclipse was visible from parts of northeastern Canada, Greenland, the Arctic Ocean, and the Russian Far East, whilst the eclipse appeared partial from a region thousands of kilometres wide, which included northeastern North America, most of Europe, and northern Asia.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on Wednesday, May 30, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of June 30, 1992</span> 20th-century total solar eclipse

A total solar eclipse occurred on Tuesday, June 30, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southeastern Uruguay and southern tip of Rio Grande do Sul, Brazil.

<span class="mw-page-title-main">Solar eclipse of February 4, 1981</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on February 4–5, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This annular solar eclipse was large because the Moon covered 99.4% of the Sun, with a path width of only 25 km . It was visible in Australia, crossing over Tasmania and southern Stewart Island of New Zealand near sunrise on February 5 (Thursday), and ended at sunset over western South America on February 4 (Wednesday). Occurring only 4 days before perigee, the moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Future total solar eclipse

A total solar eclipse will occur on October 4, 2089. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The tables below contain detailed predictions and additional information on the Total Solar Eclipse of 4 October 2089.

References

  1. "Surya Grahan 2022: Photos of October's Solar Eclipse, Captured From Mumbai, Chennai, Indore and Other Indian Cities | Weather.com". The Weather Channel.
  2. Archie, Ayana (October 25, 2022). "The last solar eclipse of the year happens today". NPR.
  3. Nicioli, Taylor (October 25, 2022). "The last solar eclipse of the year can be seen today". CNN.
  4. Fine, Camille. "Last solar eclipse of the year in photos: Marvel at this astronomical phenomenon". USA TODAY.
  5. Saros Series Catalog of Solar Eclipses NASA Eclipse Web Site.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

https://www.forbes.com/sites/jamiecartereurope/2022/10/20/solar-eclipse-2022-everything-you-need-to-know-about-next-weeks-partial-eclipse-of-the-sun/amp/