Solar eclipse of July 31, 1981

Last updated
Solar eclipse of July 31, 1981
SE1981Jul31T.png
Map
Type of eclipse
NatureTotal
Gamma 0.5792
Magnitude 1.0258
Maximum eclipse
Duration122 sec (2 m 2 s)
Coordinates 53°18′N134°06′E / 53.3°N 134.1°E / 53.3; 134.1
Max. width of band108 km (67 mi)
Times (UTC)
Greatest eclipse3:46:37
References
Saros 145 (20 of 77)
Catalog # (SE5000) 9467

A total solar eclipse occurred at the Moon's ascending node of the orbit on July 31, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The continental path of totality fell entirely within the Soviet Union, belonging to Georgia, Kazakhstan and Russia today. The southern part of Mount Elbrus, the highest mountain in Europe, also lies in the path of totality. Occurring only 3.8 days after perigee (Perigee on July 27, 1981), the Moon's apparent diameter was larger. With a path width of 107.8 km (66.984 mi, or 353,674.541 feet), this total solar eclipse had an average path.

Contents

It was the 20th eclipse of the 145th Saros cycle, which began with a partial eclipse on January 4, 1639 and will conclude with a partial eclipse on April 17, 3009.

The moon's apparent diameter was 7 arcseconds larger than the February 4, 1981 annular solar eclipse. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

Eclipses in 1981

Solar eclipses of 1979–1982

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [15] There were 8 solar eclipses between February 26, 1979 and July 20, 1982. Were there: February 26, 1979 (total solar eclipse, 0.8 days after perigee, 103.9%, 0.89811 gamma, saros 120), August 22, 1979 (small annular solar eclipse, 0.6 days before apogee, 93.3%, −0.96319 gamma, saros 125), February 16, 1980 (total solar eclipse, 1 day before perigee, 104.3%, 0.22244 gamma, saros 130), August 10, 1980 (large annular solar eclipse, 5 days before apogee, 97.3%, −0.19154 gamma, saros 135), February 4, 1981 (large annular solar eclipse, 4 days before perigee, 99.4%, −0.48375 gamma, saros 140), July 31, 1981 (total solar eclipse, 3.8 days after perigee, 102.6%, 0.57917 gamma, saros 145), January 25, 1982 (moderate partial solar eclipse, 4.7 days after apogee, 56.6%, −1.23110 gamma, saros 150) and July 20, 1982 (small partial solar eclipse, 0.9 days after perigee, 46.4%, 1.28859 gamma, saros 155).

Solar eclipse series sets from 1979–1982
Descending node Ascending node
Saros Map Gamma Saros Map Gamma
120 SE1979Feb26T.png
1979 February 26
Total
0.89811125 SE1979Aug22A.png
1979 August 22
Annular
−0.96319
130 SE1980Feb16T.png
1980 February 16
Total
0.22244135 SE1980Aug10A.png
1980 August 10
Annular
−0.19154
140 SE1981Feb04A.png
1981 February 4
Annular
−0.48375145 SE1981Jul31T.png
1981 July 31
Total
0.57917
150 SE1982Jan25P.png
1982 January 25
Partial
−1.23110155 SE1982Jul20P.png
1982 July 20
Partial
1.28859
Partial solar eclipses on June 21, 1982 and December 15, 1982 occur in the next lunar year eclipse set.

Saros 145

This solar eclipse is a part of Saros cycle 145, repeating every 18 years, 11 days, 8 hours, containing 77 events. The series started with a partial solar eclipse on January 4, 1639, and reached a first annular eclipse on June 6, 1891. It was a hybrid event on June 17, 1909, and total eclipses from June 29, 1927, through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. The longest eclipse will occur on June 25, 2522, with a maximum duration of totality of 7 minutes, 12 seconds. All eclipses in this series occurs at the Moon's ascending node.

Series members 10–32 occur between 1801 and 2359
101112
SE1801Apr13P.png
April 13, 1801
SE1819Apr24P.png
April 24, 1819
SE1837May04P.png
May 4, 1837
131415
SE1855May16P.png
May 16, 1855
SE1873May26P.png
May 26, 1873
SE1891Jun06A.png
June 6, 1891
161718
SE1909Jun17H.png
June 17, 1909
SE1927Jun29T.png
June 29, 1927
1945Jul09T.png
July 9, 1945
192021
SE1963Jul20T.png
July 20, 1963
SE1981Jul31T.png
July 31, 1981
SE1999Aug11T.png
August 11, 1999
222324
SE2017Aug21T.png
August 21, 2017
SE2035Sep02T.png
September 2, 2035
SE2053Sep12T.png
September 12, 2053
252627
SE2071Sep23T.png
September 23, 2071
SE2089Oct04T.png
October 4, 2089
SE2107Oct16T.png
October 16, 2107
282930
SE2125Oct26T.png
October 26, 2125
SE2143Nov07T.png
November 7, 2143
SE2161Nov17T.png
November 17, 2161
313233
SE2179Nov28T.png
November 28, 2179
SE2197Dec09T.png
December 9, 2197
SE2215Dec21T.png
December 21, 2215
343536
SE2233Dec31T.png
December 31, 2233
SE2252Jan12T.png
January 12, 2252
SE2270Jan22T.png
January 22, 2270
373839
SE2288Feb02T.png
February 2, 2288
SE2306Feb14T.png
February 14, 2306
SE2324Feb25T.png
February 25, 2324
40
SE2342Mar08T.png
March 8, 2342

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25October 12–13July 31-Aug 1May 18–20March 7–8
9193959799
December 23, 1878October 12, 1882July 31, 1886May 18, 1890March 7, 1894
101103105107109
December 23, 1897October 12, 1901August 1, 1905May 19, 1909March 8, 1913
111113115117119
SE1916Dec24P.png
December 24, 1916
October 12, 1920 SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121123125127129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131133135137139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141143145147149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151153155157159
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000
May 19, 2004March 7, 2008
161163165167169
December 24, 2011October 13, 2015August 1, 2019May 19, 2023March 8, 2027

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> 21st-century total solar eclipse

A total solar eclipse took place on June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger. Depending on the zone it, could be seen June 20–22

<span class="mw-page-title-main">Solar eclipse of July 11, 1991</span> 20th-century total solar eclipse

A total solar eclipse occurred at the Moon’s descending node of the orbit on Thursday, July 11, 1991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality began over the Pacific Ocean and Hawaii moving across Mexico, down through Central America and across South America ending over Brazil. It lasted for 6 minutes and 53.08 seconds at the point of maximum eclipse. There will not be a longer total eclipse until June 13, 2132. This was the largest total solar eclipse of Solar Saros series 136, because eclipse magnitude was 1.07997.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> 21st-century total solar eclipse

A total solar eclipse occurred at the ascending node of the Moon's orbit on Tuesday, July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 33 seconds visible from the Pacific Ocean. The Moon was only 2.4 days before perigee, making it fairly large.

<span class="mw-page-title-main">Solar eclipse of February 26, 1979</span> Total solar eclipse in North America

A total solar eclipse occurred at the Moon's descending node of the orbit in North America on February 26, 1979.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 21st-century annular solar eclipse

An annular solar eclipse took place on February 26, 2017. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of February 16, 1980</span> 20th-century total solar eclipse

A total solar eclipse occurred at the Moon's descending node of the orbit on February 16, 1980. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed central Africa, southern India, and into China at sunset. The southern part of Mount Kilimanjaro, the highest mountain in Africa, also lies in the path of totality. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger. This was a Supermoon Total Solar Eclipse because the Moon was just a day before perigee. All of Somalia witness the totality of the solar eclipse.

<span class="mw-page-title-main">Solar eclipse of July 22, 1990</span> 20th-century total solar eclipse

A total solar eclipse occurred on July 22, 1990. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southern Finland, the Soviet Union, and eastern Andreanof Islands and Amukta of Alaska.

<span class="mw-page-title-main">Solar eclipse of August 12, 2026</span> Total solar eclipse August 12, 2026

A total solar eclipse will occur at the Moon's descending node of the orbit on Wednesday, August 12, 2026, 2 days past perigee, in North America and Europe. The total eclipse will pass over the Arctic, Greenland, Iceland, Atlantic Ocean and northern Spain. The points of greatest duration and greatest eclipse will be just 45 km off the western coast of Iceland by 65°10.3' N and 25°12.3' W, where the totality will last 2m 18.21s. It will be the first total eclipse visible in Iceland since June 30, 1954, also Solar Saros series 126, and the only one to occur in the 21st century as the next one will be in 2196.

<span class="mw-page-title-main">Solar eclipse of November 3, 1994</span> 20th-century total solar eclipse

The solar eclipse of November 3, 1994, was a total solar eclipse visible within a band crossing South America from the Pacific to the Atlantic and visible as a partial solar eclipse everywhere on the continent. Totality was visible in Peru, northern Chile, Bolivia, northern Argentina, Paraguay, Brazil and Gough Island of British overseas territory of Saint Helena, Ascension and Tristan da Cunha. The Iguazu Falls, one of the largest waterfalls systems in the world, lay in the path of totality. Totality lasted about 4.4 minutes, so it was a relatively long total solar eclipse. Occurring only 10 hours and 2 minutes before perigee, the moon's apparent diameter was too larger.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> 20th-century total solar eclipse

A total solar eclipse occurred on September 9, 1904. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.

<span class="mw-page-title-main">Solar eclipse of June 30, 1992</span> 20th-century total solar eclipse

A total solar eclipse occurred on June 30, 1992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in southeastern Uruguay and southern tip of Rio Grande do Sul, Brazil.

<span class="mw-page-title-main">Solar eclipse of January 25, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred on January 25, 1982. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred on July 20, 1982. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 4, 1981</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on February 4–5, 1981. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This annular solar eclipse was large because the Moon covered 99.4% of the Sun, with a path width of only 25 km . It was visible in Australia, crossing over Tasmania and southern Stewart Island of New Zealand near sunrise on February 5 (Thursday), and ended at sunset over western South America on February 4 (Wednesday). Occurring only 4 days before perigee, the moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 10, 1980</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of the orbit on August 10, 1980, centred over the Pacific Ocean. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Tabuaeran of Kiribati, Peru, Bolivia, northern Paraguay and Brazil. Occurring 5 days before apogee, the Moon's apparent diameter was smaller. At greatest eclipse, the Sun was 79 degrees above horizon.

<span class="mw-page-title-main">Solar eclipse of July 20, 1963</span> 20th-century total solar eclipse

A total solar eclipse occurred on July 20, 1963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is at least the same size as the Sun's or larger, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over the surrounding region thousands of kilometres wide. Totality was visible from Hokkaido in Japan and Kuril Islands in Soviet Union on July 21, and Alaska, and Maine in the United States and also Canada on July 20. Astronomer Charles H. Smiley observed the eclipse from a U.S. Air Force F-104D Starfighter supersonic aircraft that was "racing the moon's shadow" at 1,300 mph (2,100 km/h) extending the duration of totality to 4 minutes 3 seconds. The moon was 375,819 km from the Earth.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Future total solar eclipse

A total solar eclipse will occur on January 5, 2057. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 1, 2079</span> Future total solar eclipse

A total solar eclipse will occur on Monday, May 1, 2079, with a maximum eclipse at 10:48:25.6 UTC. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse will be visible in Greenland, parts of eastern Canada and parts of the northeastern United States.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Future total solar eclipse

A total solar eclipse will occur on October 4, 2089. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The tables below contain detailed predictions and additional information on the Total Solar Eclipse of 4 October 2089.

<span class="mw-page-title-main">Solar eclipse of May 17, 1882</span> Total solar eclipse

A total solar eclipse occurred on Wednesday, May 17, 1882. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. In locations as of present or today, totality was visible in Burkina Faso, Ghana, Niger, Nigeria, Chad, Libya, Egypt, Suez Canal, Egypt, Gulf of Aqaba, Saudi Arabia, Iraq, Iran, Turkmenistan, Uzbekistan, Tajikistan, Kyrgyzstan, China and East China Sea. Totality began in Burkina Faso and ended in East China Sea. Occurring 4.2 days after perigee, the Moon’s apparent diameter was 0.9% larger than average.

References

  1. "Muscovites view eclipse of the sun". Spokane Chronicle. Spokane, Washington. 1981-07-31. p. 3. Retrieved 2023-10-18 via Newspapers.com.
  2. "Bad weather hampers view of solar eclipse". Abilene Reporter-News. Abilene, Texas. 1981-07-31. p. 16. Retrieved 2023-10-18 via Newspapers.com.
  3. "Scientists Get Good Solar Eclipse Look". The Daily Advertiser. Lafayette, Louisiana. 1981-07-31. p. 6. Retrieved 2023-10-18 via Newspapers.com.
  4. "Former Beatrician among group studying eclipse in Russia". Beatrice Daily Sun. Beatrice, Nebraska. 1981-07-31. p. 3. Retrieved 2023-10-18 via Newspapers.com.
  5. "Clouds obstruct most of Soviet eclipse". Springfield Leader and Press. Springfield, Missouri. 1981-07-31. p. 17. Retrieved 2023-10-18 via Newspapers.com.
  6. "High-flying scientists view moon's path across sun". The Kokomo Tribune. Kokomo, Indiana. 1981-07-31. p. 13. Retrieved 2023-10-18 via Newspapers.com.
  7. "Long eclipse". Liverpool Echo. Liverpool, Merseyside, England. 1981-07-31. p. 1. Retrieved 2023-10-18 via Newspapers.com.
  8. "Black day for Reds". Manchester Evening News. Manchester, Greater Manchester, England. 1981-07-31. p. 1. Retrieved 2023-10-18 via Newspapers.com.
  9. "Clouds spoil view of eclipse of sun". Calgary Herald. Calgary, Alberta, Canada. 1981-07-31. p. 14. Retrieved 2023-10-18 via Newspapers.com.
  10. "Total eclipse". North Bay Nugget. North Bay, Ontario, Canada. 1981-07-31. p. 2. Retrieved 2023-10-18 via Newspapers.com.
  11. "Weather blocks eclipse view". Edmonton Journal. Edmonton, Alberta, Canada. 1981-07-31. p. 48. Retrieved 2023-10-18 via Newspapers.com.
  12. "Hundreds of scientists study eclipse of sun". Standard-Speaker. Hazleton, Pennsylvania. 1981-08-01. p. 5. Retrieved 2023-10-18 via Newspapers.com.
  13. "Americans Join Scientists to Observe Eclipse". Tulsa World. Tulsa, Oklahoma. 1981-08-01. p. 32. Retrieved 2023-10-18 via Newspapers.com.
  14. "Eclipse casts its giant shadow across 4,300-mile Soviet path". Arizona Daily Star. Tucson, Arizona. 1981-08-01. p. 2. Retrieved 2023-10-18 via Newspapers.com.
  15. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

Photos: