(R)-2-Methyl-CBS-oxazaborolidine

Last updated
(R)-2-Methyl-CBS-oxazaborolidine
(R)-2-Methyl-CBS-oxazaborolidine.svg
Names
Preferred IUPAC name
(3aR)-1-Methyl-3,3-diphenyltetrahydro-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaborole
Other names
(R)-Methyl oxazaborolidine; (R)-(+)-2-methyl-CBS-oxazaborolidine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.103.901 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 601-151-0
PubChem CID
  • InChI=1S/C18H20BNO/c1-19-20-14-8-13-17(20)18(21-19,15-9-4-2-5-10-15)16-11-6-3-7-12-16/h2-7,9-12,17H,8,13-14H2,1H3/t17-/m1/s1 Yes check.svgY
    Key: VCDGSBJCRYTLNU-AZWGFFAPSA-N X mark.svgN
  • InChI=1/C18H20BNO/c1-19-20-14-8-13-17(20)18(21-19,15-9-4-2-5-10-15)16-11-6-3-7-12-16/h2-7,9-12,17H,8,13-14H2,1H3/t17-/m1/s1
    Key: VCDGSBJCRYTLNU-AZWGFFAPBY
  • O2B(N1CCC[C@@H]1C2(c3ccccc3)c4ccccc4)C
Properties
C18H20BNO
Molar mass 277.17 g·mol−1
AppearanceColorless to pale yellow liquid (in toluene)
Density 0.95 g/mL
Melting point 85 to 95 °C (185 to 203 °F; 358 to 368 K)
Boiling point 111 °C (232 °F; 384 K)
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H224, H225, H302, H304, H315, H318, H319, H332, H335, H336, H361, H373
P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P280, P281, P301+P310, P301+P312, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P308+P313, P310, P312, P314, P321, P330, P331, P332+P313, P337+P313, P362, P370+P378, P403+P233, P403+P235, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

(R)-2-Methyl-CBS-oxazaborolidine is an organoboron catalyst that is used in organic synthesis. This catalyst, developed by Itsuno [1] [2] and Elias James Corey, [3] [4] [5] is generated by heating (R)-(+)-2-(diphenylhydroxymethyl) pyrrolidine along with trimethylboroxine or methylboronic acid. It is an excellent tool for the synthesis of alcohols in high enantiomeric ratio. Generally, 2-10 mol% of this catalyst is used along with borane-tetrahydrofuran (THF), borane-dimethylsulfide, borane-N,N-diethylaniline, or diborane as the borane source. Enantioselective reduction using chiral oxazaborolidine catalysts has been used in the synthesis of commercial drugs such as ezetimibe and aprepitant.

See also

Related Research Articles

Elias James Corey American chemist (born 1928)

Elias James "E.J." Corey is an American organic chemist. In 1990, he won the Nobel Prize in Chemistry "for his development of the theory and methodology of organic synthesis", specifically retrosynthetic analysis. Regarded by many as one of the greatest living chemists, he has developed numerous synthetic reagents, methodologies and total syntheses and has advanced the science of organic synthesis considerably.

Corey–Itsuno reduction

The Corey–Itsuno reduction, also known as the Corey–Bakshi–Shibata (CBS) reduction, is a chemical reaction in which an achiral ketone is enantioselectively reduced to produce the corresponding chiral, non-racemic alcohol. The oxazaborolidine reagent which mediates the enantioselective reduction of ketones was previously developed by the laboratory of Itsuno and thus this transformation may more properly be called the Itsuno-Corey oxazaborolidine reduction.

CBS catalyst Asymmetric catalyst derived from proline

The CBS catalyst or Corey–Bakshi–Shibata catalyst is an asymmetric catalyst derived from proline. It finds many uses in organic reactions such as the CBS reduction, Diels-Alder reactions and (3+2) cycloadditions. Proline, a naturally occurring chiral compound, is readily and cheaply available. It transfers its stereocenter to the catalyst which in turn is able to drive an organic reaction selectively to one of two possible enantiomers. This selectivity is due to steric strain in the transition state that develops for one enantiomer but not for the other.

Chiral auxiliary

A chiral auxiliary is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions. The auxiliary can then be typically recovered for future use.

The Meerwein–Ponndorf–Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing aluminium alkoxide catalysis in the presence of a sacrificial alcohol. The advantages of the MPV reduction lie in its high chemoselectivity, and its use of a cheap environmentally friendly metal catalyst.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. This enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes. Kinetic resolution is a concept in organic chemistry and can be used for the preparation of chiral molecules in organic synthesis. Kinetic resolution reactions utilizing purely synthetic reagents and catalysts are much less common than the use of enzymatic kinetic resolution in application towards organic synthesis, although a number of useful synthetic techniques have been developed in the past 30 years.

Organocatalysis Method in organic chemistry

In organic chemistry, organocatalysis is a form of catalysis in which the rate of a chemical reaction is increased by an organic catalyst. This "organocatalyst" consists of carbon, hydrogen, sulfur and other nonmetal elements found in organic compounds. Because of their similarity in composition and description, they are often mistaken as a misnomer for enzymes due to their comparable effects on reaction rates and forms of catalysis involved.

Prolinol is a chiral amino-alcohol that is used as a chiral building block in organic synthesis. It exists as two enantiomers: the D and L forms.

Diphenylprolinol

Diphenylprolinol (D2PM), or (R/S)-(±)-diphenyl-2-pyrrolidinyl-methanol, is a norepinephrine-dopamine reuptake inhibitor which is used as a designer drug.

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being awarded one half of the 2001 Nobel Prize in Chemistry.

Diisopinocampheylborane Chemical compound

Diisopinocampheylborane is an organoborane that is useful for asymmetric synthesis. This colourless solid is the precursor to a range of related reagents. The compound was reported in 1961 by Zweifel and Brown in a pioneering demonstration of asymmetric synthesis using boranes. The reagent is mainly used for the synthesis of chiral secondary alcohols.

DuPhos

DuPhos is a class of organophosphorus compound that are used ligands for asymmetric synthesis. The name DuPhos is derived from (1) the chemical company that sponsored the research leading to this ligand's invention, DuPont and (2) the compound is a diphosphine ligand type. Specifically it is classified as a C2-symmetric ligand, consisting of two phospholanes rings affixed to a benzene ring.

Borane dimethylsulfide Chemical compound

Borane dimethylsulfide (BMS) is a complexed borane reagent that is used for hydroborations and reductions. The advantages of BMS over other borane reagents, such as borane-tetrahydrofuran, are its increased stability and higher solubility. BMS is commercially available at much higher concentrations than its tetrahydrofuran counterpart and does not require sodium borohydride as a stabilizer, which could result in undesired side reactions. In contrast, borane·THF requires sodium borohydride to inhibit reduction of THF to tributyl borate. BMS is soluble in most aprotic solvents.

Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols.

In chemistry, metal-catalysed hydroboration is a reaction used in organic synthesis. It is one of several examples of homogeneous catalysis.

Boranylium ions

In chemistry, a boranylium ion is an inorganic cation with the chemical formula BR+
2
, where R represents a non-specific substituent. Being electron-deficient, boranylium ions form adducts with Lewis bases. Boranylium ions have historical names that depend on the number of coordinated ligands:

Metal-catalyzed C–H borylation reactions are transition metal catalyzed organic reactions that produce an organoboron compound through functionalization of aliphatic and aromatic C–H bonds and are therefore useful reactions for carbon–hydrogen bond activation. Metal-catalyzed C–H borylation reactions utilize transition metals to directly convert a C–H bond into a C–B bond. This route can be advantageous compared to traditional borylation reactions by making use of cheap and abundant hydrocarbon starting material, limiting prefunctionalized organic compounds, reducing toxic byproducts, and streamlining the synthesis of biologically important molecules. Boronic acids, and boronic esters are common boryl groups incorporated into organic molecules through borylation reactions. Boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent and two hydroxyl groups. Similarly, boronic esters possess one alkyl substituent and two ester groups. Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general formula (RO)2B-B(OR)2. For example, bis(pinacolato)diboron (B2Pin2), and bis(catecholato)diborane (B2Cat2) are common boron sources of this general formula.

Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry. This theme is often considered the starting point for the area of organocatalysis, even though early discoveries went unappreciated. Modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, proceed with excellent stereocontrol.

Stereocontrolled 1,2-additions to carbonyl groups are an important class of reactions because they provide access to substituted alcohols, generating a new stereocenter in the process. Especially widespread are various reagents for stereocontrolled 1,2-hydride additions of ketones. A well-known method to synthesize enantiopure alcohols by ketone reduction is the Midland Alpine borane reduction, named after its inventor Professor M. Mark Midland. The strategy uses a chiral organoborane, derived from the hydroboration of alpha-pinene by 9-BBN, to differentiate enantiotopic faces of a ketone. Following workup with basic hydrogen peroxide, the product alcohols can be obtained, often with high degrees of enantioselectivity. The reaction works best if one of the ketone groups has low steric hindrance, such as an alkyne or nitrile. Another method, first developed in the 1980s, is called the CBS (Corey–Bakshi–Shibata) reduction, and it features the use of an oxazaborolidine catalyst along with borane as a reducing agent for accomplishing enantioselective ketone reductions. The CBS reduction has been used extensively by chemists en route to synthesizing a wide variety of natural products, including alkaloids, terpenoids, pheromones, and biotins. Fig. 1 shows an example of a diastereoselective CBS reduction being used to prepare a complex macrocyclic alcohol en route to the synthesis of 11-desmethyllaulimalide. The authors noted that CBS reduction was much more effective than using either lithium tert-butoxyaluminum hydride or L-Selectride. The CBS catalyst, usually prepared from diphenylprolinol, often can be used in low catalyst loadings, even as low as 2%.

In homogeneous catalysis, C2-symmetric ligands refer to ligands that lack mirror symmetry but have C2 symmetry. Such ligands are usually bidentate and are valuable in catalysis. The C2 symmetry of ligands limits the number of possible reaction pathways and thereby increases enantioselectivity, relative to asymmetrical analogues. C2-symmetric ligands are a subset of chiral ligands. Chiral ligands, including C2-symmetric ligands, combine with metals or other groups to form chiral catalysts. These catalysts engage in enantioselective chemical synthesis, in which chirality in the catalyst yields chirality in the reaction product.

References

  1. Hirao, A.; Itsuno, S.; Nakahama, S.; Yamazaki, N. (1981). "Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes". J. Chem. Soc. Chem. Commun. : 315–317. doi:10.1039/C39810000315.
  2. Itsuno, S.; Nakano,M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; Nakahama, S. (1985). "Asymmetric synthesis using chirally modified borohydrides. Part 3. Enantioselective reduction of ketones and oxime ethers with reagents prepared from borane and chiral amino alcohols". J. Chem. Soc. Perkin Trans. 1 : 2039–2044. doi:10.1039/p19850002039.
  3. Corey, E. J.; Bakshi, R. K.; Shibata, S. (1987). "Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications". J. Am. Chem. Soc. 109 (18): 5551–5553. doi:10.1021/ja00252a056.
  4. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. K. (1987). "A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses". J. Am. Chem. Soc. 109 (25): 7925–7926. doi:10.1021/ja00259a075.
  5. Corey, E. J.; Azimioara,M.; Sarshar, S. (1992). "X-Ray crystal structure of a chiral oxazaborolidine catalyst for enantioselective carbonyl reduction". Tetrahedron Lett. 33 (24): 3429–3430. doi:10.1016/S0040-4039(00)92654-6.