1,1-Bis(chloromethyl)ethylene

Last updated
1,1-Bis(chloromethyl)ethylene
CH2C(CH2Cl)2.png
Names
Preferred IUPAC name
3-Chloro-2-(chloromethyl)prop-1-ene
Other names
3-Chloro-2-(chloromethyl)propene, 1,1-Bis(chloromethyl)ethene
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.015.900 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 217-489-3
PubChem CID
UNII
  • InChI=1S/C4H6Cl2/c1-4(2-5)3-6/h1-3H2
    Key: XJFZOSUFGSANIF-UHFFFAOYSA-N
  • C=C(CCl)CCl
Properties
C4H6Cl2
Molar mass 124.99 g·mol−1
AppearanceColorless liquid
Density 1.1782 g/cm3
Melting point −14 °C (7 °F; 259 K) [1]
Boiling point 138 °C (280 °F; 411 K) [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
alkylating agent
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H226, H301, H315, H319, H335, H400
P210, P233, P240, P241, P242, P243, P261, P264, P270, P271, P273, P280, P301+P310, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P370+P378, P391, P403+P233, P403+P235, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1,1-Bis(chloromethyl)ethylene is the organic compound with the formula CH2=C(CH2Cl)2. It is a colorless liquid. Featuring two allylic chloride substituents, it is dialkylating agent.

Synthesis and reactions

It is prepared from pentaerythritol via a multistep procedure, beginning with the partial chlorination. [2] [3] The compound reacts with diiron nonacarbonyl to give the complex of trimethylenemethane Fe(η4-C(CH2)3)(CO)3. It is also a precursor to [1.1.1]-propellane.

Related Research Articles

<span class="mw-page-title-main">Pentaerythritol</span> Chemical compound

Pentaerythritol is an organic compound with the formula C(CH2OH)4. Classified as a polyol, it is a white solid. Pentaerythritol is a building block for the synthesis and production of explosives, plastics, paints, appliances, cosmetics, and many other commercial products.

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

Cyclopropene is an organic compound with the formula C3H4. It is the simplest cycloalkene. Because the ring is highly strained, cyclopropene is difficult to prepare and highly reactive. This colorless gas has been the subject for many fundamental studies of bonding and reactivity. It does not occur naturally, but derivatives are known in some fatty acids. Derivatives of cyclopropene are used commercially to control ripening of some fruit.

<span class="mw-page-title-main">Lithium diisopropylamide</span> Chemical compound

Lithium diisopropylamide is a chemical compound with the molecular formula LiN(CH 2)2. It is used as a strong base and has been widely utilized due to its good solubility in non-polar organic solvents and non-nucleophilic nature. It is a colorless solid, but is usually generated and observed only in solution. It was first prepared by Hamell and Levine in 1950 along with several other hindered lithium diorganylamides to effect the deprotonation of esters at the α position without attack of the carbonyl group.

The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene to form a cyclopropane. It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith. It uses a methylene free radical intermediate that is delivered to both carbons of the alkene simultaneously, therefore the configuration of the double bond is preserved in the product and the reaction is stereospecific.

In retrosynthetic analysis, a synthon is a hypothetical unit within a target molecule that represents a potential starting reagent in the retroactive synthesis of that target molecule. The term was coined in 1967 by E. J. Corey. He noted in 1988 that the "word synthon has now come to be used to mean synthetic building block rather than retrosynthetic fragmentation structures". It was noted in 1998 that the phrase did not feature very prominently in Corey's 1981 book The Logic of Chemical Synthesis, as it was not included in the index. Because synthons are charged, when placed into a synthesis a neutral form is found commercially instead of forming and using the potentially very unstable charged synthons.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

The Blanc chloromethylation is the chemical reaction of aromatic rings with formaldehyde and hydrogen chloride to form chloromethyl arenes. The reaction is catalyzed by Lewis acids such as zinc chloride. The reaction was discovered by Gustave Louis Blanc (1872-1927) in 1923

<span class="mw-page-title-main">Chloro(triphenylphosphine)gold(I)</span> Chemical compound

Chloro(triphenylphosphine)gold(I) or triphenylphosphinegold(I) chloride is a coordination complex with the formula (Ph3P)AuCl. This colorless solid is a common reagent for research on gold compounds.

<span class="mw-page-title-main">Allyl bromide</span> Chemical compound

Allyl bromide (3-bromopropene) is an organic halide. It is an alkylating agent used in synthesis of polymers, pharmaceuticals, synthetic perfumes and other organic compounds. Physically, allyl bromide is a colorless liquid with an irritating and persistent smell, however, commercial samples are yellow or brown. Allyl bromide is more reactive but more expensive than allyl chloride, and these considerations guide its use.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Chloromethyl methyl ether</span> Chemical compound

Chloromethyl methyl ether (CMME) is a compound with formula CH3OCH2Cl. A colorless liquid, it is a chloroalkyl ether. It is used as an alkylating agent. In organic synthesis, it is used for introducing the methoxymethyl ether (MOM) protecting group, and is thus often called MOM-Cl or MOM chloride. It also finds application as a chloromethylating agent in some variants of the Blanc chloromethylation.

<span class="mw-page-title-main">Bis(chloromethyl) ether</span> Chemical compound

Bis(chloromethyl) ether is an organic compound with the chemical formula (CH2Cl)2O. It is a colourless liquid with an unpleasant suffocating odour and it is one of the chloroalkyl ethers. Bis(chloromethyl) ether was once produced on a large scale, but was found to be highly carcinogenic and thus such production has ceased.

<span class="mw-page-title-main">Organozirconium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

<span class="mw-page-title-main">1.1.1-Propellane</span> Highly-strained hydrocarbon ring compound

[1.1.1]Propellane is an organic compound, the simplest member of the propellane family. It is a hydrocarbon with formula C5H6 or C2(CH2)3. The molecular structure consists of three rings of three carbon atoms each, sharing one C–C bond.

<span class="mw-page-title-main">Bis(cyclopentadienyl)titanium(III) chloride</span> Chemical compound

Bis(cyclopentadienyl)titanium(III) chloride, also known as the Nugent–RajanBabu reagent, is the organotitanium compound which exists as a dimer with the formula [(C5H5)2TiCl]2. It is an air sensitive green solid. The complex finds specialized use in synthetic organic chemistry as a single electron reductant.

The Cadogan–Sundberg indole synthesis, or simply Cadogan indole synthesis, is a name reaction in organic chemistry that allows for the generation of indoles from o-nitrostyrenes with the use of trialkyl phosphites, such as triethyl phosphite.

2-Methoxyethoxymethyl chloride is an organic compound with formula CH3OCH2CH2OCH2Cl. A colorless liquid, it is classified as a chloroalkyl ether. It is used as an alkylating agent. In organic synthesis, it is used for introducing the methoxyethoxy ether (MEM) protecting group. MEM protecting groups are generally preferred to methoxymethyl (MOM) protecting groups, both in terms of formation and removal.

Chloromethyl methyl sulfide is the organosulfur compound with the formula ClCH2SCH3. In terms of functional groups, it is a thioether and an alkyl chloride. The compound is structurally related to sulfur mustards, i.e., it is a potentially hazardous alkylating agent. The compound finds some use in organic chemistry as a protecting group. In the presence of base, it converts carboxylic acids (RCO2H) to esters RCO2CH2SCH3. The compound is prepared by treatment of dimethylsulfide with sulfuryl chloride.

References

  1. 1 2 Mooradian, Aram; Cloke, J. B. (June 1945). "The Synthesis of 3-Chloro-2-chloromethyl-1-propene from Pentaerythritol". Journal of the American Chemical Society. 67 (6): 942–944. doi:10.1021/ja01222a019.
  2. Mondanaro Lynch, Kathleen; Dailey, William P. (1995). "Improved Preparations of 3-Chloro-2-(chloromethyl)-1-propene and 1,1-Dibromo-2,2-bis(chloromethyl)cyclopropane: Intermediates in the Synthesis of [1.1.1]Propellane". Journal of Organic Chemistry. 60 (14): 4666-8. doi:10.1021/jo00119a057.
  3. Mondanaro, Kathleen R.; Dailey, William P (1998). "3-CHLORO-2-(CHLOROMETHYL)-1-PROPENE". Organic Syntheses. 75: 89. doi:10.15227/orgsyn.075.0089. Open Access logo PLoS transparent.svg