2,4,6-Tris(dimethylaminomethyl)phenol

Last updated
2,4,6-Tris(dimethylaminomethyl)phenol
2,4,6-Tris(dimethylaminomethyl)phenol.svg
Names
IUPAC name
2,4,6-Tris[(dimethylamino)methyl]phenol
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.001.831 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-013-9
PubChem CID
UNII
UN number 2735
  • InChI=1S/C15H27N3O/c1-16(2)9-12-7-13(10-17(3)4)15(19)14(8-12)11-18(5)6/h7-8,19H,9-11H2,1-6H3
    Key: AHDSRXYHVZECER-UHFFFAOYSA-N
  • CN(C)CC1=CC(=C(C(=C1)CN(C)C)O)CN(C)C
Properties
C15H27N3O
Molar mass 265.401 g·mol−1
Density 0.974 at 15°C
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H315, H319
P260, P261, P264, P264+P265, P270, P272, P273, P280, P301+P317, P301+P330+P331, P302+P352, P302+P361+P354, P304+P340, P305+P351+P338, P305+P354+P338, P316, P317, P321, P330, P332+P317, P333+P317, P337+P317, P362+P364, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2,4,6-Tris(dimethylaminomethyl)phenol is an aromatic organic chemical that has tertiary amine and phenolic hydroxyl functionality in the same molecule. [1] The formula is C15H27N3O and the CAS Registry Number is 90-72-2. It is REACH registered and the European Community Number is 202-013-9. [2] [3] [4]

Contents

Uses

A key use is as a catalyst for epoxy resin chemistry. It can be used as a homopolymerization catalyst for epoxy resins and also as an accelerator with epoxy resin curing agents. It is then further used in coatings, [5] sealants, composites, [6] adhesives [7] and elastomers. It has been stated that it is probably the most widely used room temperature accelerator for two-component epoxy resin systems. [8] [9] The kinetics of curing with and without this accelerator have been extensively studied. [10] [11] It is the usual benchmark or control used when other catalysts and accelerators are being developed and tested. [12]

In addition to its use in epoxy chemistry, it is also used in polyurethane chemistry for example by grafting the molecule into the polymer backbone. [13] It is also used as a trimerization catalyst with polymeric MDI. [14]

Polyether ether ketones may also be grafted with the molecule which then finds use in lithium batteries. [15]

The high functionality of the molecule means it can be used to complex some transition metals and this has also been studied. [16]

Often cited weaknesses are yellowing and odor. [17]

Manufacture

The material is a Mannich base and is manufactured by reacting phenol, formaldehyde and dimethylamine in a reactor under vacuum and removing the water produced.

Toxicity

It is classed as a high volume chemical and as such, its toxicity profile has been extensively studied. [18] [19] [20]

Related Research Articles

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

n-Butyl glycidyl ether is an industrial chemical used in adhesives, sealants, and as a paint or coating additive. It is principally used to reduce the viscosity of epoxy resin systems.

2-Ethylhexyl glycidyl ether is a liquid organic molecule with formula C11H22O2 an industrial chemical used to reduce the viscosity of epoxy resins. These are then used in adhesives, sealants, and paints or coatings. It has the CAS Registry Number of 2461-15-6. It has the IUPAC name of 2-(2-ethylhexoxymethyl)oxirane. It also finds use in other polymer based applications.

<i>o</i>-Cresyl glycidyl ether Chemical compound

o-Cresyl glycidyl ether (ortho-cresyl glycidyl ether, o-CGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether. It has the formula C10H12O2 and the CAS Registry Number 2210-79-9. It is one of a number of glycidyl ethers available commercially that are used to reduce the viscosity of epoxy resins. These are then further used in coatings, sealants, adhesives, composites and elastomers.

Neopentyl glycol diglycidyl ether (NPGDGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has the formula C11H20O4 and the CAS registry number of 17557-23-2. It has two oxirane groups per molecule. Its principle use is in modifying epoxy resins.

1,4-Butanediol diglycidyl ether (B14DODGE) is an organic chemical in the glycidyl ether family. It is aliphatic and a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction.

1,6-Hexanediol diglycidyl ether is an organic chemical in the glycidyl ether family. It is an aliphatic compound that is a colorless liquid. It has two epoxide (oxirane) groups per molecule. Its main use is in modifying epoxy resins especially viscosity reduction whilst flexibilizing. It is REACH registered.

1,4-Cyclohexanedimethanol diglycidyl ether is an organic chemical in the glycidyl ether family. Its formula is C14H24O4 and the IUPAC name is 2-[[4-(oxiran-2-ylmethoxymethyl)cyclohexyl]methoxymethyl]oxirane. It has the CAS number of 14228-73-0 and is REACH registered in Europe. An industrial chemical, a key use is in the reduction of the viscosity of epoxy resin systems functioning as a reactive diluent.

<span class="mw-page-title-main">C12–C14 alcohol glycidyl ether</span> Chemical compound

C12-C14 alcohol glycidyl ether (AGE) is an organic chemical in the glycidyl ether family. It is a mixture of mainly 12 and 14 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 68609-97-2 but the IUPAC name is more complex as it is a mixture and is 2-(dodecoxymethyl)oxirane;2-(tetradecoxymethyl)oxirane;2-(tridecoxymethyl)oxirane. Other names include dodecyl and tetradecyl glycidyl ethers and alkyl (C12-C14) glycidyl ether.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Castor oil glycidyl ether</span> Chemical compound

Castor oil glycidyl ether is a liquid organic chemical in the glycidyl ether family. It is sometimes called castor oil triglycidyl ether. It has the theoretical formula C66H116O12. There are two CAS numbers in use, 14228-73-0 and 74398-71-3. The IUPAC name is 2,3-bis[[(E)-12-(oxiran-2-ylmethoxy)octadec-9-enoyl]oxy]propyl (E)-12-(oxiran-2-ylmethoxy)octadec-9-enoate. A key use is acting as a modifier for epoxy resins as a reactive diluent that adds flexibility and improved mechanical properties.

<span class="mw-page-title-main">C12–C13 alcohol glycidyl ether</span> Chemical compound

C12-C13 alcohol glycidyl ether is a mixture of organic chemicals in the glycidyl ether family. It is a mixture of mainly 12 and 13 carbon chain alcohols, also called fatty alcohols that have been glycidated. It is an industrial chemical used as a surfactant but primarily for epoxy resin viscosity reduction. It has the CAS number 120547-52-6.

<span class="mw-page-title-main">Trimethylolethane triglycidyl ether</span> Chemical compound

Trimethylolethane triglycidyl ether (TMETGE) is an organic chemical in the glycidyl ether family. It has the formula C14H24O6 and the IUPAC name is 2-({2-methyl-3-[(oxiran-2-yl)methoxy]-2-{[(oxiran-2-yl)methoxy]methyl}propoxy}methyl)oxirane. The CAS number is 68460-21-9. A key use is as a modifier for epoxy resins as a reactive diluent.

<span class="mw-page-title-main">Diethylene glycol diglycidyl ether</span> Chemical compound

Diethylene glycol diglycidyl ether (DEGDGE) is an organic chemical in the glycidyl ether family with the formula C10H18O5.. The oxirane functionality makes it useful as a reactive diluent for epoxy resin viscosity reduction.

<span class="mw-page-title-main">Diglycidyl resorcinol ether</span> Chemical compound

Diglycidyl resorcinol ether, also called Resorcinol diglycidyl ether (RDGE) is a liquid aromatic organic chemical compound and chemically a glycidyl ether.

<span class="mw-page-title-main">Phenyl glycidyl ether</span> Chemical compound

Phenyl glycidyl ether, is a liquid aromatic organic chemical in the glycidyl ether class of compounds. It has the formula C9H10O2. It has the CAS Registry Number 122-60-1 and the IUPAC name of 2-(phenoxymethyl)oxirane. A key use is in the viscosity reduction of epoxy resin systems. It is REACH registered and on EINECS under the name 2,3-epoxypropyl phenyl ether.

<span class="mw-page-title-main">Diglycidyl aniline</span> Chemical compound

Diglycidyl aniline is an aromatic organic chemical in the glycidyl compound family. It is used to reduce the viscosity of epoxy resin systems. It has the empirical formula C12H15NO2 and the IUPAC name is N,N-bis(oxiran-2-ylmethyl)aniline. The CAS number is 2095-06-9. It is REACH registered in Europe with the EC number 218-259-5. A key use is in the viscosity reduction of epoxy resin systems functioning as a reactive diluent.

Polyetheramines are a group of chemicals that are aliphatic organic species based on both ether and amine groups. They are produced by reacting either ethylene oxide or propylene oxide with polyols and then aminating them. There are a number of commercially available molecules with different CAS numbers and molecular weights. They often come with a prefix of M, D or T for monofunctional, difunctional and trifunctional respectively. D-230 would mean difunctional with a molecular weight of 230. A key use is for curing epoxy resins.

References

  1. "Human Metabolome Database: Showing metabocard for 2,4,6-Tris(dimethylaminomethyl)phenol (HMDB0247627)". hmdb.ca. Retrieved 2024-06-04.
  2. PubChem. "2,4,6-Tris(dimethylaminomethyl)phenol". pubchem.ncbi.nlm.nih.gov. Retrieved 2024-06-05.
  3. "Registration Dossier - ECHA". echa.europa.eu. Retrieved 2024-06-05.
  4. "CAS Common Chemistry". commonchemistry.cas.org. Retrieved 2024-06-05.
  5. Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" pages 15 Master of Science Thesis April 1997 Imperial College London
  6. Niazi, Mina; Beheshty, Mohammad Hosain (2019-04-01). "A new latent accelerator and study of its effect on physical, mechanical and shelf-life of carbon fiber epoxy prepreg". Iranian Polymer Journal. 28 (4): 337–346. doi:10.1007/s13726-019-00704-8. ISSN   1735-5265.
  7. Schlechte, Jay S. (2023), "Advances in epoxy adhesives", Advances in Structural Adhesive Bonding, Elsevier, pp. 3–67, doi:10.1016/b978-0-323-91214-3.00030-2, ISBN   978-0-323-91214-3 , retrieved 2024-06-05
  8. Seo, Jiae; Yui, Nobuhiko; Seo, Ji-Hun (January 2019). "Development of a supramolecular accelerator simultaneously to increase the cross-linking density and ductility of an epoxy resin". Chemical Engineering Journal. 356: 303–311. Bibcode:2019ChEnJ.356..303S. doi:10.1016/j.cej.2018.09.020. ISSN   1385-8947.
  9. Chen, Fengjun; Liu, Fan; Du, Xiaogang (2023-01-10). "Molecular dynamics simulation of crosslinking process and mechanical properties of epoxy under the accelerator". Journal of Applied Polymer Science. 140 (2). doi:10.1002/app.53302. ISSN   0021-8995.
  10. Yevtushenko, G.T.; Moshinskii, L.Ya.; Beletskaya, T.V. (January 1974). "Kinetics of hardening of ED-5 epoxy resins with anhydrides in the presence of 2.4,6-Tris-(Dimethylaminomethyl)phenol". Polymer Science U.S.S.R. 16 (6): 1557–1562. doi:10.1016/0032-3950(74)90421-3. ISSN   0032-3950.
  11. Hesabi, Mohammadnabi; Salimi, Ali; Beheshty, Mohammad Hosain (May 2017). "Effect of tertiary amine accelerators with different substituents on curing kinetics and reactivity of epoxy/dicyandiamide system". Polymer Testing. 59: 344–354. doi:10.1016/j.polymertesting.2017.02.023. ISSN   0142-9418.
  12. Fedtke, Manfred (January 1987). "Acceleration mechanisms in curing reactions involving model systems". Makromolekulare Chemie. Macromolecular Symposia. 7 (1): 153–168. doi:10.1002/masy.19870070114. ISSN   0258-0322.
  13. Chung, Yong-Chan; Kim, Ji Young; Park, Ji Eun; Chun, Byoung Chul (2021-04-01). "Hydrophilic Modification of a Polyurethane Surface Using Grafted 2,4,6-Tris(dimethylaminomethyl) Phenol". Fibers and Polymers. 22 (4): 904–915. doi:10.1007/s12221-021-1406-y. ISSN   1875-0052.
  14. Imai, Yoshio; Hidai, Takao; Inukai, Takao; Nakanishi, Takehisa (January 1986). "Study on Isocyanurate-Modified MDI. 1 — Preparation". Cellular Polymers. 5 (1): 13–23. doi:10.1177/026248938600500102. ISSN   0262-4893.
  15. Kumar, Sonu; Bhushan, Mani; Shahi, Vinod K. (February 2020). "Cross-linked amphoteric membrane: Sulphonated poly(ether ether ketone) grafted with 2,4,6-tris(dimethylaminomethyl)phenol using functionalized side chain spacers for vanadium redox flow battery". Journal of Power Sources. 448: 227358. Bibcode:2020JPS...44827358K. doi:10.1016/j.jpowsour.2019.227358. ISSN   0378-7753.
  16. Romashkina, E. P.; Ilyukhin, A. B.; Strashnova, S. B.; Koval’chukova, O. V.; Palkina, K. K.; Sergienko, V. S.; Zaitsev, B. E. (2011-03-01). "Complex compounds of some p, d, and f metals with 2,4,6-tris(N,N-dimethylaminomethyl)phenol (HL): Crystal and molecular structure of H4L(NO3)3 · H2O and H4LCl3 · 3H2O". Russian Journal of Inorganic Chemistry. 56 (3): 350–356. doi:10.1134/S0036023611030193. ISSN   1531-8613.
  17. Chiang, Tzu Hsuan; Hsieh, Tsung-Eong (December 2007). "Effect of tertiary amines on yellowing of UV-curable epoxide resins". Polymer International. 56 (12): 1544–1552. doi:10.1002/pi.2300. ISSN   0959-8103.
  18. Kanekrva, Lasse; Estlander, Tuula; Jolanki, Riitta (December 1996). "OCCUPATIONAL ALLERGIC CONTACT DERMATITIS CAUSED BY 2,4,6-TRIS-(DIMETHYLAMINOMETHYL)PHENOL, AND REVIEW OF SENSITIZING EPOXY RESIN HARDENERS". International Journal of Dermatology. 35 (12): 852–856. doi:10.1111/j.1365-4362.1996.tb05050.x. ISSN   0011-9059. PMID   8970840.
  19. Aalto-Korte, Kristiina; Pesonen, Maria; Suuronen, Katri (December 2015). "Occupational allergic contact dermatitis caused by epoxy chemicals: occupations, sensitizing products, and diagnosis". Contact Dermatitis. 73 (6): 336–342. doi:10.1111/cod.12445. ISSN   0105-1873. PMID   26230376.
  20. Geier, Johannes; Dickel, Heinrich; Schröder-Kraft, Claudia; Gina, Michal; Simon, Dagmar; Weisshaar, Elke; Lang, Claudia; Brans, Richard; Bauer, Andrea; Löffler, Harald; Schubert, Steffen; for the IVDK (April 2023). "2,4, 6-Tris (dimethylaminomethyl)phenol: The allergen which came in from the cold". Contact Dermatitis. 88 (4): 316–318. doi:10.1111/cod.14268. ISSN   0105-1873. PMID   36524787.

Further reading