23S rRNA pseudouridine1911/1915/1917 synthase

Last updated
23S rRNA pseudouridine1911/1915/1917 synthase
Identifiers
EC no. 5.4.99.23
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

23S rRNA pseudouridine1911/1915/1917 synthase (also known as RluD)(EC 5.4.99.23, RluD, pseudouridine synthase RluD) is an enzyme with systematic name 23S rRNA-uridine1911/1915/1917 uracil mutase. [1] [2] [3] [4] This enzyme catalyses the following chemical reaction

23S rRNA uridine1911/uridine1915/uridine1917 23S rRNA pseudouridine1911/pseudouridine1915/pseudouridine1917

These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA.

Related Research Articles

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Pseudouridine</span> Chemical compound

Pseudouridine is an isomer of the nucleoside uridine in which the uracil is attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond.

<span class="mw-page-title-main">5S ribosomal RNA</span> RNA component of the large subunit of the ribosome

The 5S ribosomal RNA is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of 40 kDa. It is a structural and functional component of the large subunit of the ribosome in all domains of life, with the exception of mitochondrial ribosomes of fungi and animals. The designation 5S refers to the molecule's sedimentation velocity in an ultracentrifuge, which is measured in Svedberg units (S).

In enzymology, a tRNA (uracil-5-)-methyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a tRNA-pseudouridine synthase I is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Helix 69</span>

Helix 69 is a hairpin RNA structure containing 19 nucleotides in large subunit of the ribosome. Ribosome consists of large and small subunits joined with inter subunit bridges. Helix 69 interacts with the helix 44 (h44) of the small subunit to form the largest interface of two subunits called inter-subunit bridge B2a, one of the most conserved regions of the ribosome. Helix 69 is proposed to be a good drug target for antibacterial drugs. Many of the recent crystal structures have shown the involvement of this hairpin in different stages of the protein translation process. By targeting bacterial helix 69 specifically, protein synthesis in bacteria could be halted thus killing the bacteria.

23S rRNA (guanine2445-N2)-methyltransferase (EC 2.1.1.173, ycbY (gene), rlmL (gene)) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine2445-N2)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (pseudouridine1915-N3)-methyltransferase (EC 2.1.1.177, YbeA, RlmH, pseudouridine methyltransferase, m3Psi methyltransferase, Psi1915-specific methyltransferase, rRNA large subunit methyltransferase H) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (pseudouridine1915-N3)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (guanine745-N1)-methyltransferase (EC 2.1.1.187, Rlma(I), Rlma1, 23S rRNA m1G745 methyltransferase, YebH, RlmAI methyltransferase, ribosomal RNA(m1G)-methylase, rRNA(m1G)methylase, RrmA, 23S rRNA:m1G745 methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (guanine745-N1)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (uracil1939-C5)-methyltransferase (EC 2.1.1.190, RumA, RNA uridine methyltransferase A, YgcA) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (uracil1939-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

23S rRNA (cytosine1962-C5)-methyltransferase (EC 2.1.1.191, RlmI, rRNA large subunit methyltransferase I, YccW) is an enzyme with systematic name S-adenosyl-L-methionine:23S rRNA (cytosine1962-C5)-methyltransferase. This enzyme catalyses the following chemical reaction

16S rRNA pseudouridine516 synthase (EC 5.4.99.19, 16S RNA pseudouridine516 synthase, 16S PsiI516 synthase, 16S RNA Psi516 synthase, RNA pseudouridine synthase RsuA, RsuA, 16S RNA pseudouridine 516 synthase) is an enzyme with systematic name 16S rRNA-uridine516 uracil mutase. This enzyme catalyses the following chemical reaction

23S rRNA pseudouridine2457 synthase is an enzyme with systematic name 23S rRNA-uridine2457 uracil mutase. This enzyme catalyses the following chemical reaction

23S rRNA pseudouridine2604 synthase is an enzyme with systematic name 23S rRNA-uridine2604 uracil mutase. This enzyme catalyses the following chemical reaction

23S rRNA pseudouridine2605 synthase is an enzyme with systematic name 23S rRNA-uridine2605 uracil mutase. This enzyme catalyses the following chemical reaction

23S rRNA pseudouridine955/2504/2580 synthase is an enzyme with systematic name 23S rRNA-uridine955/2504/2580 uracil mutase. This enzyme catalyses the following chemical reaction

tRNA pseudouridine55 synthase is an enzyme with systematic name tRNA-uridine55 uracil mutase. This enzyme catalyses the following chemical reaction

tRNA pseudouridine13 synthase is an enzyme with systematic name tRNA-uridine13 uracil mutase. This enzyme catalyses the following chemical reaction

tRNA pseudouridine32 synthase is an enzyme with systematic name tRNA-uridine32 uracil mutase. This enzyme catalyses the following chemical reaction

23S rRNA pseudouridine746 synthase (EC 5.4.99.29, RluA, 23S RNA PSI746 synthase, 23S rRNA pseudouridine synthase, pseudouridine synthase RluA) is an enzyme with systematic name 23S rRNA-uridine746 uracil mutase. This enzyme catalyses the following chemical reaction

References

  1. Leppik M, Peil L, Kipper K, Liiv A, Remme J (November 2007). "Substrate specificity of the pseudouridine synthase RluD in Escherichia coli". The FEBS Journal. 274 (21): 5759–66. doi: 10.1111/j.1742-4658.2007.06101.x . PMID   17937767.
  2. Ejby M, Sørensen MA, Pedersen S (December 2007). "Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination". Proceedings of the National Academy of Sciences of the United States of America. 104 (49): 19410–5. Bibcode:2007PNAS..10419410E. doi: 10.1073/pnas.0706558104 . PMC   2148303 . PMID   18032607.
  3. Sivaraman J, Iannuzzi P, Cygler M, Matte A (January 2004). "Crystal structure of the RluD pseudouridine synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli". Journal of Molecular Biology. 335 (1): 87–101. doi:10.1016/j.jmb.2003.10.003. PMID   14659742.
  4. Wrzesinski J, Bakin A, Ofengand J, Lane BG (July 2000). "Isolation and properties of Escherichia coli 23S-RNA pseudouridine 1911, 1915, 1917 synthase (RluD)". IUBMB Life. 50 (1): 33–7. doi: 10.1080/15216540050176566 . PMID   11087118.