This article may require copy editing for untranslated German chemical names and needlessly-convoluted writing that could use simpler words/sentences.(August 2024) |
Names | |
---|---|
Preferred IUPAC name (2E)-3-(Dimethylamino)prop-2-enal | |
Other names 3-Dimethylaminopropenal | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
ECHA InfoCard | 100.011.962 |
EC Number |
|
PubChem CID | |
UNII | |
| |
| |
Properties | |
C5H9NO | |
Molar mass | 99.133 g·mol−1 |
Appearance | Clear, faintly yellow [1] to dark brown liquid [2] |
Density | 0.99 g·cm −3 at 25°C [1] |
Boiling point | *91 °C at 0.1 kPa [1] |
Soluble [3] | |
Solubility in methanol, [4] 1,2-dichloroethane [5] | Soluble |
Hazards | |
GHS labelling: | |
Danger | |
H314 | |
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
3-Dimethylaminoacrolein is an organic compound with the formula Me2NC(H)=CHCHO. It is a pale yellow water-soluble liquid. The compound has a number of useful and unusual properties, e.g. it "causes a reversal of the hypnotic effect of morphine in mice" and has a "stimulating effect in humans". [3]
It is a stable chemical, unlike the parent compound 3-aminoacrolein , [6] and can be used as a comparably nontoxic precursor for the genotoxic, mutagenic, and potentially carcinogenic malondialdehyde. [7] The compound can be thought of as vinylogous dimethylformamide (DMF) and combines the functionalities of an unsaturated aldehyde and an enamine. Therefore, 3-dimethylaminoacrolein and vinamidines derived there from (composed of vinylogous amidines) or vinamidinium salts (substituted 1,5-diazapentadienes) [8] can be used as reactive molecular building blocks for the formation of nitrogen-containing heterocycles, such as pyridines, pyrimidines, pyrroles or pyrazoles. [9]
3-Dimethylaminoacrolein is obtained by the addition of dimethylamine to the triple bond of propynal (propargyl aldehyde) via a Reppe vinylation. [3]
Propynal is however an inappropriate starting material for industrial synthesis because of its tendency to explode. [10] Vinyl ethers (such as ethyl vinyl ether) are more suited. [11] They react with phosgene and dimethylformamide (which forms in-situ the Vilsmeier reagent) in 68% yield to 3-ethoxypropenylidene dimethylammonium chloride, an enol ether iminium salt. In the weakly alkaline medium, 3-dimethylaminoacrolein is formed therefrom, which cleaves dimethylamine to form propanedial upon exposure to strong bases (such as sodium hydroxide).
In an alternative route, isobutyl vinyl ether reacts with the iminium chloride derived from DMF and phosgene. The conversion can be implemented in a continuous process. [4] The iminium salt yields 3-dimethylaminoacrolein in dilute sodium hydroxide solution in 86% yield. [12]
Instead of phosgene, the iminium salt can also be prepared via an inorganic acid chloride, such as phosphoryl trichloride or an organic acid chloride, such as oxalyl chloride.
3-Dimethylaminoacrolein can be used to introduce unsaturated and reactive C3 groups into CH-acidic and nucleophilic compounds.
The activated aldehyde group of 3-dimethylaminoacrolein reacts quantitatively with dialkyl sulfates such as dimethyl sulfate. The products are reactive but unstable [13] decompose at 110 °C back into the starting materials. The products can be easily transformed with nucleophiles such as alkoxides or amines into the corresponding vinylogous amide acetals or amidines. [14]
The stable 3-dimethylaminoacrolein dimethyl acetal is obtained by reaction with sodium methoxide in 62% yield. 3-Dimethylaminoacrolein can be reacted with CH-acidic compounds (such as malononitrile) to 1,3-butadiene derivatives or with cyclopentadiene to an aminofulvene.
With guanidine, 3-dimethylaminoacrolein forms almost quantitatively 2-aminopyrimidine. [4]
The amidine formed with 2-naphthylamine and the dimethyl sulfate adduct can be cyclized with sodium methoxide to give benzo[f]quinoline (1-azaphenanthrene). [15]
N-methylpyrrole forms the 3-(2-N-methylpyrrole)propenal with 3-dimethylaminoacrolein and POCl3 in 49% yield. [16]
Similarly, the preparation of an intermediate for the cholesterol lowering drug fluvastatin via the reaction of a fluoroaryl-substituted N-isopropylindole with 3-dimethylaminoacrolein and POCl3 proceeds similarly. [17] [18]
Occasionally, the iminium salt from the reaction of the Vilsmeier reagent and the vinyl ether (a precursor of 3-dimethylaminopropenal) is directly used for synthesis, e. g. for pyrazoles. [19]
When hydrazine hydrate is used, a pyrazole parent body is formed in 84% yield.
The reaction of 3-dimethylaminoacrolein with dimethylammonium tetrafluoroborate produces virtually quantitatively the vinamidinium salt 3-dimethylaminoacrolein dimethyliminium tetrafluoroborate, which crystallizes better as the perchlorate salt. The salt reacts also with cyclopentadiene in the presence of sodium amide in liquid ammonia to give the aminofulvene derivative. [20]
The same vinamidinium salt 1,1,5,5-tetramethyl-1,5-diazapentadienium chloride is also formed in the reaction of 3-dimethylaminoacrolein with dimethylamine hydrochloride in 70% yield. [21] The two-step reaction of dimethylamine and 70% perchloric acid with 3-dimethylaminoacrolein forms the same iminium salt (herein referred to as 1,3-bis(dimethylamino)trimethinium perchlorate). [22]
Lactones (e.g. γ-butyrolactone) or cyclic ketones (such as cyclopentanone) form with the vinylamidinium salt of 3-dimethylaminoacrolein and dimethylamine hydrochloride the corresponding dienaminones in 91% and 88% yield. [23]
The vinamidinium salt 1,1,5,5-tetramethyl-1,5-diazapentadienium chloride reacts with heterocycles bearing CH-acidic groups to form the corresponding dienamines which can be cyclized with bases to form fused heteroaromatics, such as carbazoles, benzofurans or benzothiophenes. [8]
N-alkylpyrroles are obtained in good yield (86%) in the reaction of the vinamidinium salt with glycine esters, [24] substituted thiophenes (up to 87%) in the reaction with mercaptoacetic acid esters. [25]
The use of 3-dimethylaminoacrolein for the synthesis of 2-chloronicotinic acid (2-CNA) is of industrial interest as an important starting material for agrochemicals and pharmaceuticals. For this purpose, 3-dimethylaminoacrolein is reacted with cyanessigsäureethylester [26] to 2-chlornicotinsäureethylester or with cyanoacetic acid n-butyl ester to 2-Chlornicotinsäure-n-butyl ester [27] in a Knoevenagel reaction.
The resulting esters of 2-chloropyridine carboxylic acid can be hydrolyzed smoothly to 2-chloronicotinic acid.
It reacts weakly alkaline and gives with iron(III) chloride a deep red color.
The Pinner reaction refers to the acid catalysed reaction of a nitrile with an alcohol to form an imino ester salt ; this is sometimes referred to as a Pinner salt. The reaction is named after Adolf Pinner, who first described it in 1877. Pinner salts are themselves reactive and undergo additional nucleophilic additions to give various useful products:
Dimethylformamide, DMF is an organic compound with the chemical formula HCON(CH3)2. Its structure is HC(=O)−N(−CH3)2. Commonly abbreviated as DMF, this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.
The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation (Δ = −327 kcal/mol.
In organic chemistry, an iminium cation is a polyatomic ion with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.
The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.
Aluminium isopropoxide is the chemical compound usually described with the formula Al(O-i-Pr)3, where i-Pr is the isopropyl group (–CH(CH3)2). This colourless solid is a useful reagent in organic synthesis.
In organic chemistry, an ortho ester is a functional group containing three alkoxy groups attached to one carbon atom, i.e. with the general formula RC(OR')3. Orthoesters may be considered as products of exhaustive alkylation of unstable orthocarboxylic acids and it is from these that the name 'ortho ester' is derived. An example is ethyl orthoacetate, CH3C(OCH2CH3)3, more correctly known as 1,1,1-triethoxyethane.
Sodium cyanoborohydride is a chemical compound with the formula Na[BH3(CN)]. It is a colourless salt used in organic synthesis for chemical reduction including that of imines and carbonyls. Sodium cyanoborohydride is a milder reductant than other conventional reducing agents.
Stephen aldehyde synthesis, a named reaction in chemistry, was invented by Henry Stephen (OBE/MBE). This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R-CN) using tin(II) chloride (SnCl2), hydrochloric acid (HCl) and quenching the resulting iminium salt ([R-CH=NH2]+Cl−) with water (H2O). During the synthesis, ammonium chloride is also produced.
The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.
Imidoyl chlorides are organic compounds that contain the functional group RC(NR')Cl. A double bond exist between the R'N and the carbon centre. These compounds are analogues of acyl chloride. Imidoyl chlorides tend to be highly reactive and are more commonly found as intermediates in a wide variety of synthetic procedures. Such procedures include Gattermann aldehyde synthesis, Houben-Hoesch ketone synthesis, and the Beckmann rearrangement. Their chemistry is related to that of enamines and their tautomers when the α hydrogen is next to the C=N bond. Many chlorinated N-heterocycles are formally imidoyl chlorides, e.g. 2-chloropyridine, 2, 4, and 6-chloropyrimidines.
1-Tetralone is a bicyclic aromatic hydrocarbon and a ketone. In terms of its structure, it can also be regarded as benzo-fused cyclohexanone. It is a colorless oil with a faint odor. It is used as starting material for agricultural and pharmaceutical agents. The carbon skeleton of 1-tetralone is found in natural products such as Aristelegone A (4,7-dimethyl-6-methoxy-1-tetralone) from the family of Aristolochiaceae used in traditional Chinese medicine.
Dimethylcarbamoyl chloride (DMCC) is a reagent for transferring a dimethylcarbamoyl group to alcoholic or phenolic hydroxyl groups forming dimethyl carbamates, usually having pharmacological or pesticidal activities. Because of its high toxicity and its carcinogenic properties shown in animal experiments and presumably also in humans, dimethylcarbamoyl chloride can only be used under stringent safety precautions.
Tetramethylurea is the organic compound with the formula (Me2N)2CO. It is a substituted urea. This colorless liquid is used as an aprotic-polar solvent, especially for aromatic compounds and is used e. g. for Grignard reagents.
N-Hydroxyphthalimide is the organic compound with the formula C6H4(CO)2NOH. A white or yellow solid, it is a derivative of phthalimide. The compound is as a catalyst in the synthesis of other organic compounds. It is soluble in water and organic solvents such as acetic acid, ethyl acetate and acetonitrile.
N,N,N′,N′-Tetramethylformamidinium chloride is the simplest representative of quaternary formamidinium cations of the general formula [R2N−CH=NR2]+ with a chloride as a counterion in which all hydrogen atoms of the protonated formamidine [HC(=NH2)NH2]+ are replaced by methyl groups.
Tris(dimethylamino)methane (TDAM) is the simplest representative of the tris(dialkylamino)methanes of the general formula (R2N)3CH in which three of the four of methane's hydrogen atoms are replaced by dimethylamino groups (−N(CH3)2). Tris(dimethylamino)methane can be regarded as both an amine and an orthoamide.
Dimethylaminoethyl acrylate or DMAEA is an unsaturated carboxylic acid ester having a tertiary amino group. It is a colorless to yellowish, water-miscible liquid with a pungent, amine-like odor. DMAEA is an important acrylic monomer that gives basic properties to copolymers.
3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane (DVTOSU) is a bicyclic organic molecule having a central quaternary carbon atom with which two alicyclic rings are linked, each comprising five atoms. DVTOSU is a diallyl acetal and the precursor for the isomeric ketene acetal monomer 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane (DETOSU) which is a building block for polyorthoesters.
2-Cumaranone is a bicyclic heteroaromatic compound in which a six-membered benzene ring is annulated with a five-membered γ-butyrolactone ring. The 2(3H)-benzofuranone can also be considered as a lactone of (2-hydroxyphenyl)acetic acid. The benzofuranone basic structure is the basis of some natural products – such as rosmadial, which is isolatable from rosemary oil, and some substances with high pharmacological activity, such as griseofulvin and rifampicin. Furthermore, 2-cumaranone is utilized as a starting material for the preparation of chemiluminescent and fluorescent dyes, for synthetic pharmaceutical agents, like the antiarrhythmic drug dronedarone, and especially for the fungicide azoxystrobin.