Malondialdehyde

Last updated

Contents

Malondialdehyde
Malondialdehyd.svg
Malondialdehyde Enol-Form.png
Malondialdehyde Keto-Form.png
Names
IUPAC name
propanedial
Other names
Malonic aldehyde; Malonodialdehyde; Propanedial; 1,3-Propanedial ; Malonaldehyde ; Malonyldialdehyde
Identifiers
3D model (JSmol)
AbbreviationsMDA
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C3H4O2/c4-2-1-3-5/h2-3H,1H2 X mark.svgN
    Key: WSMYVTOQOOLQHP-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C3H4O2/c4-2-1-3-5/h2-3H,1H2
    Key: WSMYVTOQOOLQHP-UHFFFAOYAU
  • dialdehyde:O=CCC=O
  • enol:OC=CC=O
Properties
C3H4O2
Molar mass 72.063 g·mol−1
AppearanceNeedle-like solid [1]
Density 0.991 g/mL
Melting point 72 °C (162 °F; 345 K)
Boiling point 108 °C (226 °F; 381 K)
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
none [1]
REL (Recommended)
Ca [1]
IDLH (Immediate danger)
Ca [N.D.] [1]
Related compounds
Related alkenals
Glucic acid

4-Hydroxynonenal

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Malondialdehyde belong to the class of β-dicarbonyls. A colorless liquid, malondialdehyde is a highly reactive compound that occurs as the enol. [2] It is a physiological metabolite, and a marker for oxidative stress.

Structure and synthesis

Malondialdehyde mainly exists as its enol, hydroxyacrolein: [2]

CH2(CHO)2 → HOC(H)=CH-CHO

In organic solvents, the cis-isomer is favored, whereas in water the trans-isomer predominates. The equilibrium is rapid and is inconsequential for many purposes.

In the laboratory it can be generated in situ by hydrolysis of its acetal 1,1,3,3-tetramethoxypropane, which is commercially available and shelf-stable, unlike malondialdehyde. [2] Malondialdehyde is easily deprotonated to give the sodium salt of the enolate (m.p. 245 °C).

Biosynthesis and reactivity

Malondialdehyde results from lipid peroxidation of polyunsaturated fatty acids. [3] It is a prominent product in thromboxane A2 synthesis wherein cyclooxygenase 1 or cycloxygenase 2 metabolizes arachidonic acid to prostaglandin H2 by platelets and a wide array of other cell types and tissues. This product is further metabolized by thromboxane synthase to thromboxane A2, 12-hydroxyheptadecatrienoic acid, and malonyldialdehyde. Alternatively, it may rearrange non-enzymatically to a mixture of 8-cis and 8-trans isomers of 12-hydroxyeicosaheptaenoic acid plus malonyldialdehyde (see 12-Hydroxyheptadecatrienoic acid). [4] The degree of lipid peroxidation can be estimated by the amount of malondialdehyde in tissues. [3]

Reactive oxygen species degrade polyunsaturated lipids, forming malondialdehyde. [5] This compound is a reactive aldehyde and is one of the many reactive electrophile species that cause toxic stress in cells and form covalent protein adducts referred to as "advanced lipoxidation end-products" (ALE), in analogy to advanced glycation end-products (AGE). [6] The production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. [7] [8]

Malondialdehyde reacts with deoxyadenosine and deoxyguanosine in DNA, forming DNA adducts, the primary one being M1G, which is mutagenic. [9] The guanidine group of arginine residues condense with malondialdehyde to give 2-aminopyrimidines.

Human ALDH1A1 aldehyde dehydrogenase is capable of oxidizing malondialdehyde.

Analysis

Malondialdehyde and other thiobarbituric reactive substances (TBARS) condense with two equivalents of thiobarbituric acid to give a fluorescent red derivative that can be assayed spectrophotometrically. [2] [10] 1-Methyl-2-phenylindole is an alternative more selective reagent. [2]

Hazards and pathology

Malondialdehyde is reactive and potentially mutagenic. [11] It has been found in heated edible oils such as sunflower and palm oils. [12]

Corneas of patients with keratoconus and bullous keratopathy have increased levels of malondialdehyde, according to one study. [13] MDA also can be found in tissue sections of joints from patients with osteoarthritis. [14]

Levels of malondialdehyde can be also considered (as a marker of lipid peroxidation) to assess the membrane damage in spermatozoa; this is crucial because oxidative stress affects sperm function by altering membrane fluidity, permeability and impairing sperm functional competence. [15]

See also

Related Research Articles

Rancidification is the process of complete or incomplete autoxidation or hydrolysis of fats and oils when exposed to air, light, moisture, or bacterial action, producing short-chain aldehydes, ketones and free fatty acids.

An unsaturated fat is a fat or fatty acid in which there is at least one double bond within the fatty acid chain. A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond.

Lipid peroxidation is the conversion of lipids to peroxide and hydroperoxide derivatives. These derivatives, known as lipid peroxides or lipid oxidation products (LOPs), are susceptible to further reactions that are relevant to "DNA and protein modification, radiation damage, aging..." Lipid peroxidation mainly applies to unsaturated fats, especially polyunsaturated fats such as those derived from linoleic acid.

<span class="mw-page-title-main">4-Hydroxynonenal</span> Chemical compound

4-Hydroxynonenal, or 4-hydroxy-2-nonenal or 4-HNE or HNE,, is an α,β-unsaturated hydroxyalkenal that is produced by lipid peroxidation in cells. 4-HNE is the primary α,β-unsaturated hydroxyalkenal formed in this process. It is a colorless oil. It is found throughout animal tissues, and in higher quantities during oxidative stress due to the increase in the lipid peroxidation chain reaction, due to the increase in stress events. 4-HNE has been hypothesized to play a key role in cell signal transduction, in a variety of pathways from cell cycle events to cellular adhesion.

Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

<span class="mw-page-title-main">Docosatetraenoic acid</span> Chemical compound

Docosatetraenoic acid designates any straight chain 22:4 fatty acid.

The isoprostanes are prostaglandin-like compounds formed in vivo from the free radical-catalyzed peroxidation of essential fatty acids without the direct action of cyclooxygenase (COX) enzymes. The compounds were discovered in 1990 by L. Jackson Roberts and Jason D. Morrow in the Division of Clinical Pharmacology at Vanderbilt University. These nonclassical eicosanoids possess potent biological activity as inflammatory mediators that augment the perception of pain. These compounds are accurate markers of lipid peroxidation in both animal and human models of oxidative stress.

Thiobarbituric acid reactive substances (TBARS) are formed as a byproduct of lipid peroxidation which can be detected by the TBARS assay using thiobarbituric acid as a reagent. TBARS can be upregulated, for example, by heart attack or by certain kinds of stroke.

<span class="mw-page-title-main">PTGS1</span>

Cyclooxygenase 1 (COX-1), also known as prostaglandin-endoperoxide synthase 1, is an enzyme that in humans is encoded by the PTGS1 gene. In humans it is one of two cyclooxygenases.

<span class="mw-page-title-main">Aldehyde dehydrogenase 3 family, member A1</span> Protein-coding gene in the species Homo sapiens

Aldehyde dehydrogenase, dimeric NADP-preferring is an enzyme that in humans is encoded by the ALDH3A1 gene.

<span class="mw-page-title-main">Oxylipin</span> Class of lipids

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. Oxylipins are derived from polyunsaturated fatty acids (PUFAs) by COX enzymes (cyclooxygenases), by LOX enzymes (lipoxygenases), or by cytochrome P450 epoxygenase.

Protectin D1 also known as neuroprotectin D1 and abbreviated most commonly as PD1 or NPD1 is a member of the class of specialized proresolving mediators. Like other members of this class of polyunsaturated fatty acid metabolites, it possesses strong anti-inflammatory, anti-apoptotic and neuroprotective activity. PD1 is an aliphatic acyclic alkene 22 carbons in length with two hydroxyl groups at the 10 and 17 carbon positions and one carboxylic acid group at the one carbon position.

<span class="mw-page-title-main">12-Hydroxyheptadecatrienoic acid</span> Chemical compound

12-Hydroxyheptadecatrienoic acid (also termed 12-HHT, 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid, or 12(S)-HHTrE) is a 17 carbon metabolite of the 20 carbon polyunsaturated fatty acid, arachidonic acid. It was discovered and structurally defined in 1973 by P. Wlodawer, Bengt I. Samuelsson, and M. Hamberg, as a product of arachidonic acid metabolism made by microsomes (i.e. endoplasmic reticulum) isolated from sheep seminal vesicle glands and by intact human platelets. 12-HHT is less ambiguously termed 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid to indicate the S stereoisomerism of its 12-hydroxyl residue and the Z, E, and E cis-trans isomerism of its three double bonds. The metabolite was for many years thought to be merely a biologically inactive byproduct of prostaglandin synthesis. More recent studies, however, have attached potentially important activity to it.

<span class="mw-page-title-main">9-Hydroxyoctadecadienoic acid</span> Chemical compound

9-Hydroxyoctadecadienoic acid (or 9-HODE) has been used in the literature to designate either or both of two stereoisomer metabolites of the essential fatty acid, linoleic acid: 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(S)-HODE) and 9(R)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(R)-HODE); these two metabolites differ in having their hydroxy residues in the S or R configurations, respectively. The accompanying figure gives the structure for 9(S)-HETE. Two other 9-hydroxy linoleic acid derivatives occur in nature, the 10E,12E isomers of 9(S)-HODE and 9(R)-HODE viz., 9(S)-hydroxy-10E,12E-octadecadienoic acid (9(S)-EE-HODE) and 9(R)-hydroxy-10E,12E-octadecadienoic acid (13(R)-EE-HODE); these two derivatives have their double bond at carbon 12 in the E or trans configuration as opposed to the Z or cis configuration. The four 9-HODE isomers, particularly under conditions of oxidative stress, may form together in cells and tissues; they have overlapping but not identical biological activities and significances. Because many studies have not distinguished between the S and R stereoisomers and, particularly in identifying tissue levels, the two EE isomers, 9-HODE is used here when the isomer studied is unclear.

<span class="mw-page-title-main">Coronaric acid</span> Chemical compound

Coronaric acid (isoleukotoxin) is a mono-unsaturated, epoxide derivative of the di-saturated fatty acid, linoleic acid (i.e. 9(Z),12(Z) octadecadienoic acid). It is a mixture of the two optically active isomers of 12(Z) 9,10-epoxy-octadecenoic acid. This mixture is also termed 9,10-epoxy-12Z-octadecenoic acid or 9(10)-EpOME and when formed by or studied in mammalians, isoleukotoxin.

Di-deuterated ethyl linoleate is an experimental, orally-bioavailable synthetic deuterated polyunsaturated fatty acid (PUFA), a part of reinforced lipids. It is an isotopologue of linoleic acid, an essential omega-6 PUFA. The deuterated compound, while identical to natural linoleic acid except for the presence of deuterium, is resistant to lipid peroxidation which makes studies of its cell-protective properties worthwhile.

Retrotope, Inc. is a drug development company advancing the idea that polyunsaturated fatty acids (PUFA) drugs fortified with heavy isotopes protect living cells by making bonds within the delicate molecules inside and around cells harder to break. This makes the cells less prone to damage caused by reactive oxygen species (ROS), one of the principal causes of ageing and age-associated diseases. Founded in 2006 by entrepreneurs and scientists with seed funding from private investors, Retrotope is developing a non-antioxidant approach to preventing lipid peroxidation, a detrimental factor in mitochondrial, neuronal, and retinal diseases. The company employs the virtual business model and works in scientific collaboration with more than 80 research groups in universities worldwide.

<span class="mw-page-title-main">Reactive aldehyde species</span>

Reactive aldehyde species (RASP), also known as reactive aldehydes, refer to a class of electrophilic organic aldehyde molecules that are generally toxic or facilitate inflammation. RASP covalently react with amine groups and thiol groups, particularly in proteins. Following threshold amounts of binding to the electrophile-responsive proteome, RASP modify protein function, as has been described with MAP kinase, protein kinase C, and other proteins that potentiate cytokine release and other aspects of inflammation. Binding of RASP to proteins can also lead to NF-kB activation, autoantibody formation, inflammasome activation, and activation of Scavenger Receptor A. RASP are formed via a variety of processes, including oxidation of alcohols, polyamine metabolism and lipid peroxidation. In addition to binding to proteins and other amine or thiol-containing molecules such as glutathione, RASP are metabolized by aldehyde dehydrogenases or aldehyde reductases. Due to the toxicity of RASP, only a small number of genetic mutations in aldehyde dehydrogenases allow for viable offspring, resulting in Sjögren-Larsson Syndrome, Succinic Semi-Aldehyde Dehydrogenase Deficiency, and other rare diseases.

<span class="mw-page-title-main">Isotope effect on lipid peroxidation</span>

Isotope effect is observed when molecules containing heavier isotopes of the same atoms are engaged in a chemical reaction at a slower rate. Deuterium-reinforced lipids can be used for the protection of living cells by slowing the chain reaction of lipid peroxidation. The lipid bilayer of the cell and organelle membranes contain polyunsaturated fatty acids (PUFA) are key components of cell and organelle membranes. Any process that either increases oxidation of PUFAs or hinders their ability to be replaced can lead to serious disease. Correspondingly, drugs that stop the chain reaction of lipid peroxidation have preventive and therapeutic potential.

<span class="mw-page-title-main">Reinforced lipids</span> Deuterated lipid molecules

Reinforced lipids are lipid molecules in which some of the fatty acids contain deuterium instead of hydrogen. They can be used for the protection of living cells by slowing the chain reaction due to isotope effect on lipid peroxidation. The lipid bilayer of the cell and organelle membranes contain polyunsaturated fatty acids (PUFA) are key components of cell and organelle membranes. Any process that either increases oxidation of PUFAs or hinders their ability to be replaced can lead to serious disease. Correspondingly, use of reinforced lipids that stop the chain reaction of lipid peroxidation has preventive and therapeutic potential.

References

  1. 1 2 3 4 NIOSH Pocket Guide to Chemical Hazards. "#0377". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 3 4 5 V. Nair, C. L. O'Neil, P. G. Wang "Malondialdehyde", Encyclopedia of Reagents for Organic Synthesis, 2008, John Wiley & Sons, New York. doi : 10.1002/047084289X.rm013.pub2 Article Online Posting Date: March 14, 2008
  3. 1 2 Davey MW1, Stals E, Panis B, Keulemans J, Swennen RL (2005). "High-Throughput Determination of Malondialdehyde in Plant Tissues". Analytical Biochemistry . 347 (2): 201–207. doi:10.1016/j.ab.2005.09.041. PMID   16289006.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  4. Rouzer, Carol A.; Marnett, Lawrence J. (2003). "Mechanism of Free Radical Oxygenation of Polyunsaturated Fatty Acids by Cyclooxygenases". Chemical Reviews. 103 (6): 2239–2304. doi:10.1021/cr000068x. PMID   12797830.
  5. Pryor WA, Stanley JP (1975). "Letter: A suggested mechanism for the production of malondialdehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation". J. Org. Chem. 40 (24): 3615–7. doi:10.1021/jo00912a038. PMID   1185332.
  6. Farmer EE, Davoine C (2007). "Reactive electrophile species". Curr. Opin. Plant Biol. 10 (4): 380–6. doi:10.1016/j.pbi.2007.04.019. PMID   17646124.
  7. Moore K, Roberts LJ (1998). "Measurement of lipid peroxidation". Free Radic. Res. 28 (6): 659–71. doi:10.3109/10715769809065821. PMID   9736317.
  8. Del Rio D, Stewart AJ, Pellegrini N (2005). "A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress". Nutr Metab Cardiovasc Dis. 15 (4): 316–28. doi:10.1016/j.numecd.2005.05.003. PMID   16054557.
  9. Marnett LJ (1999). "Lipid peroxidation-DNA damage by malondialdehyde". Mutat. Res. 424 (1–2): 83–95. doi:10.1016/S0027-5107(99)00010-X. PMID   10064852.
  10. "Thiobarbituric acid reactive substances (TBARS) Assay". www.amdcc.org. Archived from the original on 14 September 2006.
  11. Hartman PE, Putative mutagens and carcinogens in foods. IV. Malonaldehyde (malondialdehyde) Environ Mutagen. 1983;5(4):603-7
  12. Dourerdjou, P.; Koner, B. C. (2008), Effect of Different Cooking Vessels on Heat-Induced Lipid Peroxidation of Different Edible Oils" Journal of Food Biochemistry, 32: 740–751. doi : 10.1111/j.1745-4514.2008.00195.x
  13. Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ (March 2002). "Evidence of oxidative stress in human corneal diseases". J. Histochem. Cytochem. 50 (3): 341–51. doi: 10.1177/002215540205000306 . PMID   11850437.
  14. Tiku ML, Narla H, Jain M, Yalamanchili P (2007). "Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation". Arthritis Research & Therapy . 9 (4): R76. doi: 10.1186/ar2274 . PMC   2206377 . PMID   17686167.
  15. Collodel, G.; Moretti, E.; Micheli, L.; Menchiari, A.; Moltoni, L.; Cerretani, D. (March 2015). "Semen characteristics and malondialdehyde levels in men with different reproductive problems". Andrology. 3 (2): 280–286. doi: 10.1111/andr.297 . PMID   25331426. S2CID   28027300.