3-Nitroaniline

Last updated
3-Nitroaniline
3-nitroaniline chemical structure.png
3-Nitroaniline-3D-balls.png
Names
Preferred IUPAC name
3-Nitroaniline
Systematic IUPAC name
3-Nitrobenzenamine
Other names
meta-Nitroaniline
m-Nitroaniline
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.002.481 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-729-1
PubChem CID
RTECS number
  • BY6825000
UNII
UN number 1661
  • InChI=1S/C6H6N2O2/c7-5-2-1-3-6(4-5)8(9)10/h1-4H,7H2 Yes check.svgY
    Key: XJCVRTZCHMZPBD-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H6N2O2/c7-5-2-1-3-6(4-5)8(9)10/h1-4H,7H2
    Key: XJCVRTZCHMZPBD-UHFFFAOYAY
  • O=[N+]([O-])c1cccc(N)c1
Properties
C6H6N2O2
Molar mass 138.126 g·mol−1
AppearanceYellow solid
Density 0.9011
Melting point 114 °C (237 °F; 387 K)
Boiling point 306 °C (583 °F; 579 K)
0.1 g/100 ml (20 °C)
Acidity (pKa)2.47
-70.09·10−6 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg
Danger
H301, H311, H331, H373, H412
P260, P261, P264, P270, P271, P273, P280, P301+P310, P302+P352, P304+P340, P311, P312, P314, P321, P322, P330, P361, P363, P403+P233, P405, P501
Related compounds
Related compounds
2-Nitroaniline, 4-Nitroaniline
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Nitroaniline is an organic compound with the formula H2NC6H4NO2. A yellow solid, it is a derivative of aniline, carrying a nitro functional group in position 3. It is an isomer of 2-nitroaniline and 4-nitroaniline. It is used as a precursor to dyes. [1]

Synthesis and applications

Structure of disperse yellow 5, a disperse dye derived from 3-nitroaniline. DisperseYellow5.svg
Structure of disperse yellow 5, a disperse dye derived from 3-nitroaniline.

3-Nitroaniline is produced on a commercial scale by reduction of 1,3-dinitrobenzene with hydrogen sulfide: [1]

In principle it can also be prepared by nitration of benzamide followed by the Hofmann rearrangement of the resulting 3-nitrobenzamide. The reaction involves treating the 3-nitrobenzamide with sodium hypobromite or sodium hypochlorite to transform the amide group into an amine.

It is used as a chemical intermediate for azo coupling component 17 and the dyes disperse yellow 5 and acid blue 29. The chemical is changed to other substances (dyestuffs and m-nitrophenol) during the dyeing process.

Related Research Articles

The nitrite ion has the chemical formula NO
2
. Nitrite is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also refers to organic compounds having the –ONO group, which are esters of nitrous acid.

Sulfur dyes are the most commonly used dyes manufactured for cotton in terms of volume. They are inexpensive, generally have good wash-fastness, and are easy to apply. Sulfur dyes are predominantly black, brown, and dark blue. Red sulfur dyes are unknown, although a pink or lighter scarlet color is available.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Azo compound</span> Organic compounds with a diazenyl group (–N=N–)

Azo compounds are organic compounds bearing the functional group diazenyl.

<span class="mw-page-title-main">Styphnic acid</span> Chemical compound

Styphnic acid, or 2,4,6-trinitro-1,3-benzenediol, is a yellow astringent acid that forms hexagonal crystals. It is used in the manufacture of dyes, pigments, inks, medicines, and explosives such as lead styphnate. It is itself a low sensitivity explosive, similar to picric acid, but explodes upon rapid heating.

<span class="mw-page-title-main">Chlorobenzene</span> Aromatic organochlorine compound

Chlorobenzene is the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.

<span class="mw-page-title-main">Azo dye</span> Class of organic compounds used as dye

Azo dyes are organic compounds bearing the functional group R−N=N−R′, in which R and R′ are usually aryl and substituted aryl groups. They are a commercially important family of azo compounds, i.e. compounds containing the C-N=N-C linkage. Azo dyes are synthetic dyes and do not occur naturally. Most azo dyes contain only one azo group but there are some that contain two or three azo groups, called "diazo dyes" and "triazo dyes" respectively. Azo dyes comprise 60-70% of all dyes used in food and textile industries. Azo dyes are widely used to treat textiles, leather articles, and some foods. Chemically related derivatives of azo dyes include azo pigments, which are insoluble in water and other solvents.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

<span class="mw-page-title-main">2-Nitroaniline</span> Chemical compound

2-Nitroaniline is an organic compound with the formula H2NC6H4NO2. It is a derivative of aniline, carrying a nitro functional group in position 2. It is mainly used as a precursor to o-phenylenediamine.

<span class="mw-page-title-main">4-Nitroaniline</span> Chemical compound

4-Nitroaniline, p-nitroaniline or 1-amino-4-nitrobenzene is an organic compound with the formula C6H6N2O2. A yellow solid, it is one of three isomers of nitroaniline. It is an intermediate in the production of dyes, antioxidants, pharmaceuticals, gasoline, gum inhibitors, poultry medicines, and as a corrosion inhibitor.

The term nitroaniline in chemistry refers to a derivative of aniline (C6H5NH2) containing a nitro group (—NO2) There are three simple nitroanilines of formula C6H4(NH2)(NO2) which differ only in the position of the nitro group:

<i>o</i>-Anisidine Chemical compound

o-Anisidine (2-anisidine) is an organic compound with the formula CH3OC6H4NH2. A colorless liquid, commercial samples can appear yellow owing to air oxidation. It is one of three isomers of the methoxy-containing aniline derivative.

1,2-Dichloro-4-nitrobenzene is an organic compound with the formula 1,2-Cl2C6H3-4-NO2. This pale yellow solid is related to 1,2-dichlorobenzene by the replacement of one H atom with a nitro functional group. This compound is an intermediate in the synthesis of agrochemicals.

<span class="mw-page-title-main">Azo violet</span> Chemical compound

Azo violet (Magneson I; p-nitrobenzeneazoresorcinol) is an azo compound with the chemical formula C12H9N3O4. It is used commercially as a violet dye and experimentally as a pH indicator, appearing yellow below pH 11, and violet above pH 13. It also turns deep blue in the presence of magnesium salt in a slightly alkaline, or basic, environment. Azo violet may also be used to test for the presence of ammonium ions. The color of ammonium chloride or ammonium hydroxide solution will vary depending upon the concentration of azo violet used. Magneson I is used to test Be also; it produces an orange-red lake with Be(II) in alkaline medium.

<span class="mw-page-title-main">4-Nitrochlorobenzene</span> Chemical compound

4-Nitrochlorobenzene is the organic compound with the formula ClC6H4NO2. It is a pale yellow solid. 4-Nitrochlorobenzene is a common intermediate in the production of a number of industrially useful compounds, including antioxidants commonly found in rubber. Other isomers with the formula ClC6H4NO2 include 2-nitrochlorobenzene and 3-nitrochlorobenzene.

Zinin reaction or Zinin reduction involves reduction of nitro aromatic compounds to the amines using sodium sulfide. It is used to convert nitrobenzenes to anilines. The reaction selectively reduces nitro groups in the presence of other easily reduced functional groups are present in the molecule.

<span class="mw-page-title-main">1,3-Dinitrobenzene</span> Chemical compound

1,3-Dinitrobenzene is one of three isomers of dinitrobenzene, with the formula C6H4(NO2)2. It is one of three isomers of dinitrobenzene. The compound is a yellow solid that is soluble in organic solvents.

2,4-Dinitroaniline is a chemical compound with a formula of C6H5N3O4. It is used as an explosive and as a reagent to detect and characterize aldehydes and ketones.

References

  1. 1 2 Gerald Booth (2007). "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN   978-3527306732.