3-Pentanone

Last updated
3-Pentanone
3-Pentanone structure.svg
3-Pentanone-3D-balls.png
Names
Preferred IUPAC name
Pentan-3-one
Other names
Diethyl ketone, diethylketone, 3-pentanone, dimethyl acetone, propione, DEK, metacetone, methacetone, ethyl ketone fraction
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.265 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-490-3
PubChem CID
RTECS number
  • SA8050000
UNII
UN number 1156
  • InChI=1S/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3 Yes check.svgY
    Key: FDPIMTJIUBPUKL-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3
    Key: FDPIMTJIUBPUKL-UHFFFAOYAJ
  • O=C(CC)CC
Properties
C5H10O
Molar mass 86.134 g·mol−1
AppearanceColorless liquid [1]
Odor Acetone-like [2]
Density 0.81 g/cm3 at 20 °C [2]
Melting point −39 °C (−38 °F; 234 K) [2]
Boiling point 102 °C (216 °F; 375 K) [2]
35 g/L [2]
Vapor pressure 35 mmHg [1]
-58.14·10−6 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H225, H335, H336
P210, P233, P240, P241, P242, P243, P261, P271, P280, P303+P361+P353, P304+P340, P312, P370+P378, P403+P233, P403+P235, P405, P501
Flash point 12.78 °C (55.00 °F; 285.93 K)
425 °C (797 °F; 698 K)
Explosive limits 1.6%-6.4% [1]
NIOSH (US health exposure limits):
PEL (Permissible)
none [1]
REL (Recommended)
TWA 200 ppm (705 mg/m3) [1]
IDLH (Immediate danger)
N.D. [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Pentanone (also known as diethyl ketone) is a simple, symmetrical dialkyl ketone. It is a colorless liquid ketone with an odor like that of acetone. It is soluble in about 25 parts water, but miscible with organic solvents.

Contents

Uses

3-Pentanone is primarily used as starting material in chemical synthesis. A major application is in the industrial synthesis of vitamin E. [3] [4] It has also been used in the synthesis of Oseltamivir (Tamiflu).

3-Pentanone itself finds some use as a specialty solvent in paint, although it is less common than butanone.

Syntheses

Ketonic decarboxylation route

3-Pentanone is produced by ketonic decarboxylation of propanoic acid using metal oxide catalysts:

2 CH3CH2CO2H → (CH3CH2)2CO + CO2 + H2O

in the laboratory, the reaction can be conducted in a tube furnace. [5]

Carbonylation route

It can also be prepared by combining ethylene, CO, and H2. [4] When the reaction is catalyzed by dicobalt octacarbonyl, water can be used as a source of hydrogen. A proposed intermediate is the ethylene-propionyl species [CH3C(O)Co(CO)3(ethylene)] which undergoes a migratory insertion to form [CH3COCH2CH2Co(CO)3]. The required hydrogen arises from the water shift reaction. For details, see [6] If the water shift reaction is not operative, the reaction affords a polymer containing alternating carbon monoxide and ethylene units. Such aliphatic polyketones are more conventionally prepared using palladium catalysts. [7]

Safety

The TLV value for 3-pentanone is 200 ppm (705 mg/m3). [4] 3-pentanone can be hazardous if it comes in contact with the skin or eyes, and can cause irritation of the skin and redness, watering, and itching of the eyes. This chemical can also cause nervous system or organ damage if ingested. Although considered stable, 3-pentanone is extremely flammable if exposed to flame, sparks, or another source of heat. For safety, it should be stored in a flammable materials cabinet away from heat or sources of ignition, preferably in a cool, well-ventilated area. [8]

See also

Related Research Articles

In chemistry, a hydration reaction is a chemical reaction in which a substance combines with water. In organic chemistry, water is added to an unsaturated substrate, which is usually an alkene or an alkyne. This type of reaction is employed industrially to produce ethanol, isopropanol, and butan-2-ol.

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is an isomer of another solvent, butanone.

<span class="mw-page-title-main">Ethylene oxide</span> Cyclic compound (C2H4O)

Ethylene oxide is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

<span class="mw-page-title-main">Methylamine</span> Organic chemical compound

Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.

In chemistry, homogeneous catalysis is catalysis where the catalyst is in same phase as reactants, principally by a soluble catalyst a in solution. In contrast, heterogeneous catalysis describes processes where the catalysts and substrate are in distinct phases, typically solid-gas, respectively. The term is used almost exclusively to describe solutions and implies catalysis by organometallic compounds. Homogeneous catalysis is an established technology that continues to evolve. An illustrative major application is the production of acetic acid. Enzymes are examples of homogeneous catalysts.

<span class="mw-page-title-main">Dimethoxyethane</span> Chemical compound

Dimethoxyethane, also known as glyme, monoglyme, dimethyl glycol, ethylene glycol dimethyl ether, dimethyl cellosolve, and DME, is a colorless, aprotic, and liquid ether that is used as a solvent, especially in batteries. Dimethoxyethane is miscible with water.

<span class="mw-page-title-main">2-Butanol</span> Secondary alcohol

Butan-2-ol, or sec-butanol, is an organic compound with formula CH3CH(OH)CH2CH3. Its structural isomers are 1-butanol, isobutanol, and tert-butanol. 2-Butanol is chiral and thus can be obtained as either of two stereoisomers designated as (R)-(−)-butan-2-ol and (S)-(+)-butan-2-ol. It is normally encountered as a 1:1 mixture of the two stereoisomers — a racemic mixture.

<span class="mw-page-title-main">Wacker process</span> Chemical reaction

The Wacker process or the Hoechst-Wacker process refers to the oxidation of ethylene to acetaldehyde in the presence of palladium(II) chloride and copper(II) chloride as the catalyst. This chemical reaction was one of the first homogeneous catalysis with organopalladium chemistry applied on an industrial scale.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

The chemical compound 1,2-dichloroethane, commonly known as ethylene dichloride (EDC), is a chlorinated hydrocarbon. It is a colourless liquid with a chloroform-like odour. The most common use of 1,2-dichloroethane is in the production of vinyl chloride, which is used to make polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds, and as a solvent. It forms azeotropes with many other solvents, including water and other chlorocarbons.

<span class="mw-page-title-main">Methyl isobutyl ketone</span> Chemical compound

Methyl isobutyl ketone (MIBK, 4-methylpentan-2-one) is an organic compound with the condensed chemical formula (CH3)2CHCH2C(O)CH3. This ketone is a colourless liquid that is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose.

<span class="mw-page-title-main">Dimethylamine</span> Chemical compound

Dimethylamine is an organic compound with the formula (CH3)2NH. This secondary amine is a colorless, flammable gas with an ammonia-like odor. Dimethylamine is commonly encountered commercially as a solution in water at concentrations up to around 40%. An estimated 270,000 tons were produced in 2005.

<span class="mw-page-title-main">Ethylenediamine</span> Chemical compound

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">Ethylamine</span> Chemical compound

Ethylamine, also known as ethanamine, is an organic compound with the formula CH3CH2NH2. This colourless gas has a strong ammonia-like odor. It condenses just below room temperature to a liquid miscible with virtually all solvents. It is a nucleophilic base, as is typical for amines. Ethylamine is widely used in chemical industry and organic synthesis.

<span class="mw-page-title-main">Methyl vinyl ketone</span> Chemical compound

Methyl vinyl ketone (MVK, IUPAC name: butenone) is the organic compound with the formula CH3C(O)CH=CH2. It is a reactive compound classified as an enone, in fact the simplest example thereof. It is a colorless, flammable, highly toxic liquid with a pungent odor. It is soluble in water and polar organic solvents. It is a useful intermediate in the synthesis of other compounds.

<span class="mw-page-title-main">Crotonaldehyde</span> Chemical compound

Crotonaldehyde is a chemical compound with the formula CH3CH=CHCHO. The compound is usually sold as a mixture of the E- and Z-isomers, which differ with respect to the relative position of the methyl and formyl groups. The E-isomer is more common (data given in Table is for the E-isomer). This lachrymatory liquid is moderately soluble in water and miscible in organic solvents. As an unsaturated aldehyde, crotonaldehyde is a versatile intermediate in organic synthesis. It occurs in a variety of foodstuffs, e.g. soybean oils.

<span class="mw-page-title-main">Isopropylamine</span> Chemical compound

Isopropylamine is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry.

Isopropyl alcohol is a colorless, flammable organic compound with a pungent alcoholic odor.

References

  1. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0212". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 3 4 5 Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  3. Müller, Marc-André; Schäfer, Christian; Litta, Gilberto; Klünter, Anna-Maria; Traber, Maret G.; Wyss, Adrian; Ralla, Theo; Eggersdorfer, Manfred; Bonrath, Werner (6 December 2022). "100 Years of Vitamin E: From Discovery to Commercialization" (PDF). European Journal of Organic Chemistry. 2022 (45). doi:10.1002/ejoc.202201190.
  4. 1 2 3 Hardo Siegel, Manfred Eggersdorfer "Ketones" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2002 by Wiley-VCH, Wienheim. doi : 10.1002/14356007.a15_077
  5. Furniss, Brian; Hannaford, Antony; Smith, Peter & Tatchell, Austin (1996). Vogel's Textbook of Practical Organic Chemistry (5th ed.). London: Longman Science & Technical. p.  613. ISBN   9780582462366.
  6. Murata K.; Matsuda A. (1981). "Application of Homogeneous Water-Gas Shift Reaction III Further Study of the Hydrocarbonylation – A highly Selective Formation of Diethyl Keton from Ethene, CO and H2O". Bulletin of the Chemical Society of Japan . 54 (7): 2089–2092. doi: 10.1246/bcsj.54.2089 .
  7. J. Liu; B.T. Heaton; J.A. Iggo & R. Whyman (2004). "The Complete Delineation of the Initiation, Propagation, and Termination Steps of the Carbomethoxy Cycle for the Carboalkoxylation of Ethene by Pd–Diphosphane Catalysts". Angew. Chem. Int. Ed. 43 (1): 90–94. doi:10.1002/anie.200352369. PMID   14694480.
  8. Chemicals & Laboratory Equipment, Material Safety Data Sheet for 3-pentanone Archived 2010-01-02 at the Wayback Machine , ScienceLab.com, updated 11/06/2008