4-Methyl-3-thiosemicarbazide

Last updated
4-Methyl-3-thiosemicarbazide
4-Methyl-3-thiosemicarbazide.png
Names
Preferred IUPAC name
N-Methylhydrazinecarbothioamide
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.026.876 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 229-563-2
PubChem CID
UNII
  • InChI=1S/C2H7N3S/c1-4-2(6)5-3/h3H2,1H3,(H2,4,5,6) Yes check.svgY
    Key: PTVZQOAHCSKAAS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/C2H7N3S/c1-4-2(6)5-3/h3H2,1H3,(H2,4,5,6)
    Key: OKISUZLXOYGIFP-UHFFFAOYAC
  • CNC(=S)NN
Properties
C2H7N3S
Molar mass 105.16 g·mol−1
Melting point 135 to 138 °C (275 to 280 °F; 408 to 411 K) [1]
Hazards
GHS labelling:
GHS-pictogram-skull.svg
Danger
H300
P264, P270, P301+P310, P321, P330, P405, P501
Lethal dose or concentration (LD, LC):
14 mg/kg rat
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

4-Methyl-3-thiosemicarbazide is an organosulfur compound with the formula of CH3NHC(S)NHNH2. It is a white, odorless solid. The compound is one of the many derivatives of thiosemicarbazide. It is a precursor to diverse organic compounds and metal complexes.

Contents

Applications

4-Methyl-3-thiosemicarbazide is used as an intermediate compound in the synthesis of some types of herbicides, for example tebuthiuron. [2]

Structure of Ni(H2NNCSNHMe)2. Ni(H2NNCSNHMe)2 (BAKBEV).png
Structure of Ni(H2NNCSNHMe)2.

Precautions and toxicity

4-Methyl-3-thiosemicarbazide can cause irritation of the eyes, respiratory tract, and skin. Swallowing the chemical may cause death. [1] It is classified as a "dangerous good for transport". [4]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Thymine</span> Chemical compound of DNA

Thymine is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nucleobase. In RNA, thymine is replaced by the nucleobase uracil. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calf thymus glands, hence its name.

<span class="mw-page-title-main">Methyl isocyanate</span> Chemical compound

Methyl isocyanate (MIC) is an organic compound with the molecular formula CH3NCO. Synonyms are isocyanatomethane and methyl carbylamine. Methyl isocyanate is an intermediate chemical in the production of carbamate pesticides (such as carbaryl, carbofuran, methomyl, and aldicarb). It has also been used in the production of rubbers and adhesives. As an extremely toxic and irritating compound, it is very hazardous to human health. MIC was the principal toxicant involved in the Bhopal gas disaster, which short-term killed 4,000–8,000 people and caused permanent injury and premature deaths to tens of thousands more. It is also a very potent lachrymatory agent.

<span class="mw-page-title-main">Anisole</span> Organic compound (CH₃OC₆H₅) also named methoxybenzene

Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is mainly made synthetically and is a precursor to other synthetic compounds. Structurally, it is an ether with a methyl and phenyl group attached. Anisole is a standard reagent of both practical and pedagogical value.

Iodomethane, also called methyl iodide, and commonly abbreviated "MeI", is the chemical compound with the formula CH3I. It is a dense, colorless, volatile liquid. In terms of chemical structure, it is related to methane by replacement of one hydrogen atom by an atom of iodine. It is naturally emitted by rice plantations in small amounts. It is also produced in vast quantities estimated to be greater than 214,000 tons annually by algae and kelp in the world's temperate oceans, and in lesser amounts on land by terrestrial fungi and bacteria. It is used in organic synthesis as a source of methyl groups.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<i>beta</i>-Sitosterol Chemical compound

β-sitosterol (beta-sitosterol) is one of several phytosterols with chemical structures similar to that of cholesterol. It is a white, waxy powder with a characteristic odor, and is one of the components of the food additive E499. Phytosterols are hydrophobic and soluble in alcohols.

This is the list of extremely hazardous substances defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act. The list can be found as an appendix to 40 CFR 355. Updates as of 2006 can be seen on the Federal Register, 71 FR 47121.

<span class="mw-page-title-main">Methyl vinyl ketone</span> Chemical compound

Methyl vinyl ketone (MVK, IUPAC name: butenone) is the organic compound with the formula CH3C(O)CH=CH2. It is a reactive compound classified as an enone, in fact the simplest example thereof. It is a colorless, flammable, highly toxic liquid with a pungent odor. It is soluble in water and polar organic solvents. It is a useful intermediate in the synthesis of other compounds.

<span class="mw-page-title-main">Methyllithium</span> Chemical compound

Methyllithium is the simplest organolithium reagent, with the empirical formula CH3Li. This s-block organometallic compound adopts an oligomeric structure both in solution and in the solid state. This highly reactive compound, invariably used in solution with an ether as the solvent, is a reagent in organic synthesis as well as organometallic chemistry. Operations involving methyllithium require anhydrous conditions, because the compound is highly reactive towards water. Oxygen and carbon dioxide are also incompatible with MeLi. Methyllithium is usually not prepared, but purchased as a solution in various ethers.

<span class="mw-page-title-main">Azinphos-methyl</span> Chemical compound

Azinphos-methyl (Guthion) is a broad spectrum organophosphate insecticide manufactured by Bayer CropScience, Gowan Co., and Makhteshim Agan. Like other pesticides in this class, it owes its insecticidal properties to the fact that it is an acetylcholinesterase inhibitor. It is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.

The Étard reaction is a chemical reaction that involves the direct oxidation of an aromatic or heterocyclic bound methyl group to an aldehyde using chromyl chloride. For example, toluene can be oxidized to benzaldehyde.

MPP<sup>+</sup> Chemical compound

MPP+ (1-methyl-4-phenylpyridinium) is a positively charged organic molecule with the chemical formula C12H12N+. It is a neurotoxin that acts by interfering with oxidative phosphorylation in mitochondria by inhibiting complex I, leading to the depletion of ATP and eventual cell death.

<span class="mw-page-title-main">Thiosemicarbazide</span> Chemical compound

Thiosemicarbazide is the chemical compound with the formula H2NC(S)NHNH2. A white, odorless solid, it is related to thiourea (H2NC(S)NH2) by the insertion of an NH center. They are commonly used as ligands for transition metals. Many thiosemicarbazides are known. These feature an organic substituent in place of one or more H's of the parent molecule. 4-Methyl-3-thiosemicarbazide is a simple example.

<span class="mw-page-title-main">Semustine</span> Chemical compound

Semustine is an alkylating nitrosourea compound used in chemotherapy treatment of various types of tumours. Due to its lipophilic property, semustine can cross the blood-brain barrier for the chemotherapy of brain tumours, where it interferes with DNA replication in the rapidly-dividing tumour cells. Semustine, just as lomustine, is administered orally. Evidence has been found that treatment with semustine can cause acute leukaemia as a delayed effect in very rare cases.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

The Kröhnke pyridine synthesis is reaction in organic synthesis between α-pyridinium methyl ketone salts and α, β-unsaturated carbonyl compounds used to generate highly functionalized pyridines. Pyridines occur widely in natural and synthetic products, so there is wide interest in routes for their synthesis. The method is named after Fritz Kröhnke.

<span class="mw-page-title-main">Methyldichlorophosphine</span> Chemical compound

Methyldichlorophosphine (alternatively known as dichloro(methyl)phosphane, SW and methylphosphonous dichloride) is an organophosphorus compound with the chemical formula CH3PCl2. It is a colorless, corrosive, flammable, and highly reactive liquid with a pungent odor.

References

  1. 1 2 Material Safety Data Sheet, October 26, 2012, retrieved August 23, 2013
  2. Ralph Kenneth Achgill, Laurence Wesley Call (November 2, 1989), Improved synthesis of 4-methyl-3-thiosemicarbazide , retrieved August 24, 2013
  3. Burrows, Andrew D.; Harrington, Ross W.; Mahon, Mary F.; Teat, Simon J. (2002). "Structural manipulation through selective substitution of hydrogen bonding groups: The supramolecular structures of bis(thiosemicarbazidato)nickel complexes". CrystEngComm. 4 (89): 539. doi:10.1039/b208284e.
  4. 4-Methyl-3-thiosemicarbazide (CAS 6610-29-3), 2007, retrieved August 24, 2013