5-Nonanone

Last updated
5-Nonanone
5-Nonanone.svg
Names
Preferred IUPAC name
Nonan-5-one [1]
Other names
Dibutyl ketone; n-Butylketone
Identifiers
3D model (JSmol)
1743583
ChemSpider
ECHA InfoCard 100.007.224 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 207-946-5
MeSH 5-nonanone
PubChem CID
UNII
UN number 1224
  • InChI=1S/C9H18O/c1-3-5-7-9(10)8-6-4-2/h3-8H2,1-2H3
    Key: WSGCRAOTEDLMFQ-UHFFFAOYSA-N
  • CCCCC(=O)CCCC
Properties
C9H18O
Molar mass 142.242 g·mol−1
AppearanceColorless
Density 0.82 g/mL [1]
Melting point −4 °C; 25 °F; 269 K
Boiling point 188.5 °C; 371.2 °F; 461.6 K
log P 2.88 [1]
Vapor pressure 0.073 kPa (at 25.0 °C) [1]
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H226, H319, H335, H336, H372
P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P280, P303+P361+P353, P304+P340, P305+P351+P338, P312, P314, P337+P313, P370+P378, P403+P233, P403+P235, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

5-Nonanone, or dibutyl ketone, is the organic compound with the formula (CH3CH2CH2CH2)2CO. This colorless liquid is a symmetrical ketone. [2]

Contents

Synthesis

5-Nonanone, which is potentially of interest as a diesel fuel, can be produced from levulinic acid, which can be produced from fructose. Levulinic acid is converted to valeric acid, which undergoes ketonization. [3]

Toxicology

Metabolic pathway

5-Nonanone was expected to be metabolized to a γ-diketone (a diketone with the second oxygen three carbons away from the first, e.g. 2,5- or 3,6-diketones).

Metabolic studies confirmed the in vivo ω-oxidation of 5-nonanone to 2,5-nonanedione and 2-hexanone. Subsequent oxidative and decarboxylative steps also produce 2,5-hexanedione. Besides these metabolites, 38% of the 5-nonanone dose is converted to carbon dioxide. No unchanged 5-nonanone is detected in the urine after administration. [4]

Of these metabolites, 2,5-hexanedione is believed to be the most neurotoxic compound. Of all the aforementioned metabolites, the toxicity is believed to be due to the metabolic transformation to this γ-diketone. [5]

Toxicological effects

In rats, the neurotoxicity of 5-nonanone is enhanced by methyl ethyl ketone. This suggests induction of microsomal oxidizing enzymes, which results in greater production of toxic metabolites. Chronic exposure to the compound has been shown to produce a clinical neuropathy, characterized by giant axonal swellings filled with neurofilaments. It also resulted in an orange/brown discoloration of the hair of the rats. [2]

Another study was done on rats to explore the enhancement of the toxicity of 5-nonanone by 5-methyl-2-octanone. The combination of these two compounds increases the neurotoxic effect of 5-nonanone approximately sixfold. When only exposed to 5-methyl-2-octanone liver swelling was observed, indicating that metabolic activation of hepatic oxidative enzymes may be the cause of the increase in toxicity in co-administration. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is called pharmacokinetics.

<span class="mw-page-title-main">Phenylacetone</span> Chemical compound

Phenylacetone, also known as phenyl-2-propanone, is an organic compound with the chemical formula C6H5CH2COCH3. It is a colorless oil that is soluble in organic solvents. It is a mono-substituted benzene derivative, consisting of an acetone attached to a phenyl group. As such, its systematic IUPAC name is 1-phenyl-2-propanone.

<span class="mw-page-title-main">Iproniazid</span> Antidepressant

Iproniazid is a non-selective, irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine class. It is a xenobiotic that was originally designed to treat tuberculosis, but was later most prominently used as an antidepressant drug. However, it was withdrawn from the market because of its hepatotoxicity. The medical use of iproniazid was discontinued in most of the world in the 1960s, but remained in use in France until its discontinuation in 2015.

<i>o</i>-Phenylenediamine Chemical compound

o-Phenylenediamine (OPD) is an organic compound with the formula C6H4(NH2)2. This aromatic diamine is an important precursor to many heterocyclic compounds. OPD is a white compound although samples appear darker owing to oxidation by air. It is isomeric with m-phenylenediamine and p-phenylenediamine.

<span class="mw-page-title-main">Hexobarbital</span> Chemical compound

Hexobarbital or hexobarbitone, sold both in acid and sodium salt forms as Citopan, Evipan, and Tobinal, is a barbiturate derivative having hypnotic and sedative effects. It was used in the 1940s and 1950s as an agent for inducing anesthesia for surgery, as well as a rapid-acting, short-lasting hypnotic for general use, and has a relatively fast onset of effects and short duration of action. It was also used to murder women prisoners at Ravensbrück concentration camp. Modern barbiturates have largely supplanted the use of hexobarbital as an anesthetic, as they allow for better control of the depth of anesthesia. Hexobarbital is still used in some scientific research.

<span class="mw-page-title-main">Hexane-2,5-dione</span> Chemical compound

2,5-Hexanedione (Acetonylacetone) is an aliphatic diketone. It is a colorless liquid. In humans, it is a toxic metabolite of hexane and of 2-hexanone.

<span class="mw-page-title-main">Penitrem A</span> Chemical compound

Penitrem A (tremortin) is an indole-diterpenoid mycotoxin produced by certain species of Aspergillus, Claviceps, and Penicillium, which can be found growing on various plant species such as ryegrass. Penitrem A is one of many secondary metabolites following the synthesis of paxilline in Penicillium crostosum. Penitrem A poisoning in humans and animals usually occurs through the consumption of contaminated foods by mycotoxin-producing species, which is then distributed through the body by the bloodstream. It bypasses the blood-brain barrier to exert its toxicological effects on the central nervous system. In humans, penitrem A poisoning has been associated with severe tremors, hyperthermia, nausea/vomiting, diplopia, and bloody diarrhea. In animals, symptoms of penitrem A poisoning has been associated with symptoms ranging from tremors, seizures, and hyperthermia to ataxia and nystagmus.

MPP<sup>+</sup> Chemical compound

MPP+ (1-methyl-4-phenylpyridinium) is a positively charged organic molecule with the chemical formula C12H12N+. It is a neurotoxin that acts by interfering with oxidative phosphorylation in mitochondria by inhibiting complex I, leading to the depletion of ATP and eventual cell death.

α-Ketoisocaproic acid Chemical compound

α-Ketoisocaproic acid (α-KIC), also known as 4-methyl-2-oxovaleric acid, and its conjugate base and carboxylate, α-ketoisocaproate, are metabolic intermediates in the metabolic pathway for L-leucine. Leucine is an essential amino acid, and its degradation is critical for many biological duties. α-KIC is produced in one of the first steps of the pathway by branched-chain amino acid aminotransferase by transferring the amine on L-leucine onto alpha ketoglutarate, and replacing that amine with a ketone. The degradation of L-leucine in the muscle to this compound allows for the production of the amino acids alanine and glutamate as well. In the liver, α-KIC can be converted to a vast number of compounds depending on the enzymes and cofactors present, including cholesterol, acetyl-CoA, isovaleryl-CoA, and other biological molecules. Isovaleryl-CoA is the main compound synthesized from ɑ-KIC. α-KIC is a key metabolite present in the urine of people with Maple syrup urine disease, along with other branched-chain amino acids. Derivatives of α-KIC have been studied in humans for their ability to improve physical performance during anaerobic exercise as a supplemental bridge between short-term and long-term exercise supplements. These studies show that α-KIC does not achieve this goal without other ergogenicsupplements present as well. α-KIC has also been observed to reduce skeletal muscle damage after eccentrically biased resistance exercises in people who do not usually perform those exercises.

<i>tert</i>-Amyl alcohol Chemical compound

tert-Amyl alcohol (TAA) or 2-methylbutan-2-ol (2M2B), is a branched pentanol.

<span class="mw-page-title-main">2-Hexanone</span> Chemical compound

2-Hexanone is a ketone used as a general solvent and in paints. It dissolves cellulose nitrate, vinyl polymers and copolymers, and natural and synthetic resins. It is recommended as a solvent because it is photochemically inactive; however it has a very low safe threshold limit value. 2-Hexanone is absorbed through the lungs, orally and dermally and its metabolite, 2,5-hexanedione, is neurotoxic. Animal tests have shown that the neurotoxic effect of 2-hexanone may be potentiated by simultaneous administration of 2-butanone.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

α-Methyldopamine Chemical compound

α-Methyldopamine (α-Me-DA), also known as 3,4-dihydroxyamphetamine, is a research chemical of the catecholamine and amphetamine chemical classes. Its bis-glutathionyl metabolite is slightly neurotoxic when directly injected into the brain's ventricles.

Arsenic biochemistry refers to biochemical processes that can use arsenic or its compounds, such as arsenate. Arsenic is a moderately abundant element in Earth's crust, and although many arsenic compounds are often considered highly toxic to most life, a wide variety of organoarsenic compounds are produced biologically and various organic and inorganic arsenic compounds are metabolized by numerous organisms. This pattern is general for other related elements, including selenium, which can exhibit both beneficial and deleterious effects. Arsenic biochemistry has become topical since many toxic arsenic compounds are found in some aquifers, potentially affecting many millions of people via biochemical processes.

<span class="mw-page-title-main">Leptophos</span> Chemical compound

Leptophos (O-(4-bromo-2,5-dichlorophenyl) O-methyl phenylphosphonothioate) belongs to the organophosphates and at room temperature it is a stable white solid. It is also known as Phosvel, Abar and Vcs 506. Leptophos was primarily used as a pesticide and fungicide. for rice, cotton, fruit and vegetables until its use was discontinued in 1975 in USA, but still sold in South-Eastern Asia in 1981.

<span class="mw-page-title-main">25D-NBOMe</span> Chemical compound

25D-NBOMe is a derivative of the phenethylamine derived hallucinogen 2C-D. It acts in a similar manner to related compounds such as 25I-NBOMe, which is a potent agonist at the 5-HT2A receptor. 25D-NBOMe has been sold as a street drug since 2010 and produces similar effects in humans to related compounds such as 25I-NBOMe and 25C-NBOMe. It was banned as a Temporary Class Drug in the UK on 10 June 2013 after concerns about its recreational use.

<span class="mw-page-title-main">4-Ipomeanol</span> Chemical compound

4-Ipomeanol (4-IPO) is a pulmonary pre-toxin isolated from sweet potatoes infected with the fungus Fusarium solani. One of the 4-IPO metabolites is toxic to the lungs, liver and kidney in humans and animals. This metabolite can covalently bind to proteins, thereby interfering with normal cell processes.

<span class="mw-page-title-main">14-Hydroxygelsenicine</span> Indole alkaloid found in some plants

14-Hydroxygelsenicine (HGE) is a gelsedine-type indole alkaloid naturally found in some plants of the Gelsemium genus. G. elegans was used in traditional Chinese medicine as a remedy for a plethora of conditions such as skin ulcers and dermatitis, pain related to cancer, rheumatic arthritis, psoriasis as well as to treat bone fractures. It can also be found under the names “Duan Chang Cao”, “Gou Wen” and “heartbreak grass”. G. elegans is also known for its toxic effects; it is used by hilltribes of southeastern Asia as an effective means of committing suicide and has been linked to certain types of toxic honey, where HGE was the most abundant component. Gelsedine-type alkaloids from G. elegans usually express high toxicity, with gelsenicine being one of the most toxic. However, toxicity of HGE has not yet been thoroughly researched. More recent studies have shown that alkaloids derived from G. elegans have anti-tumor, anti-inflammatory, analgesic, and immunomodulation properties, with the toxic dose being close to the therapeutic dose.

<span class="mw-page-title-main">2,5-Hexanediol</span> Chemical compound

2,5-Hexanediol is an organic compound with the formula CH3CH(OH)CH2CH2CH(OH)CH3. It is both a glycol and a secondary alcohol. It is a colorless water-soluble viscous liquid. The chemical properties are well understood and have been extensively reported and studied. It has the IUPAC name of hexane-2,5-diol and the CAS Registry Number CAS 2935-44-6.

References

  1. 1 2 3 4 "5-nonanone - Compound Summary". PubChem Compound Database. National Center for Biotechnology Information, U.S. National Library of Medicine . Retrieved December 18, 2018.
  2. 1 2 Mark A. Shifman; Doyle G. Graham; Jeff W. Priest; Thomas W. Bouldin (1981). "The neurotoxicity of 5-nonanone: Preliminary report". Toxicology Letters. 8 (4–5): 283–288. doi:10.1016/0378-4274(81)90114-4. PMID   7268811.
  3. Pileidis, Filoklis D.; Titirici, Maria-Magdalena (2016). "Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass". ChemSusChem. 9 (6): 562–582. Bibcode:2016ChSCh...9..562P. doi:10.1002/cssc.201501405. PMID   26847212.
  4. Bingham, E.; Cohrssen, B.; Powell, C.H. (2012). Patty's Toxicology. John Wiley & Sons. p. 6–316. ISBN   978-0-470-41081-3.
  5. 1 2 John L. O'Donoghue; Walter J. Krasavage; George D. DiVincenzo; Donald A. Ziegler (1982). "Commercial-grade methyl heptyl ketone (5-methyl-2-octanone) neurotoxicity: Contribution of 5-nonanone". Toxicology and Applied Pharmacology. 62 (2): 307–316. doi:10.1016/0041-008X(82)90129-6. PMID   7058532.