Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Hydrus |
Right ascension | 01h 31m 04.13s [1] |
Declination | −73° 25′ 03.8″ [1] |
Apparent magnitude (V) | 12.83 [2] |
Characteristics | |
Spectral type | WO4 + O4V [3] |
U−B color index | −1.17 [2] |
B−V color index | −0.16 [2] |
Astrometry | |
Radial velocity (Rv) | 237.97 ± 1.15 [3] km/s |
Distance | 197,000 ly (61,000 pc) |
Absolute magnitude (MV) | −6.3 [4] (−4.9/−5.9) |
Orbit [3] | |
Period (P) | 16.638 days |
Semi-major axis (a) | 108 R☉ |
Eccentricity (e) | 0.10 ± 0.03 |
Inclination (i) | 40 ± 10° |
Semi-amplitude (K1) (primary) | 157 km/s |
Semi-amplitude (K2) (secondary) | 54.7 ± 1.6 km/s |
Details [4] | |
WR | |
Mass | 19 M☉ |
Radius | 2 R☉ |
Luminosity | 1,400,000 L☉ |
Surface gravity (log g) | 5.1 cgs |
Temperature | 141,000 K |
O | |
Mass | 61 M☉ |
Radius | 14 R☉ |
Luminosity | 708,000 L☉ |
Surface gravity (log g) | 4.0 cgs |
Temperature | 45,000 K |
Rotational velocity (v sin i) | 120 km/s |
Age | 3.0 Myr |
Other designations | |
Database references | |
SIMBAD | data |
AB8, also known as SMC WR8, is a binary star in the Small Magellanic Cloud (SMC). A Wolf-Rayet star and a main sequence companion of spectral type O orbit in a period of 16.638 days. It is one of only nine known WO stars, the only Wolf-Rayet star in the SMC not on the nitrogen sequence, and the only Wolf-Rayet star in the SMC outside the main bar.
AB8 was first discovered by Lindsay in 1961, when it was catalogued as entry 547 in a list of emission line objects in the SMC. [5] Sanduleak listed it as a confirmed member of the SMC, gave a spectral type of WR + OB, [6] and identified it as one of only five stars that were not nuclei of planetary nebulae, but showed OVI emission in their spectra. [7] These would later be formally grouped as the WO class, the oxygen sequence of Wolf-Rayet stars. [8]
In 1978, before the WO class was coined, Breysacher and Westerlund gave a spectral type of WC4? + OB. [9] The definitive catalogue of Wolf Rayet stars in the SMC was published shortly after by Azzopardi and Breysacher, with AB8 the eighth out of a grand total of eight stars. These are referred to as SMC WR stars, or SMC AB, or more commonly just AB. [10]
AB8 is located at the end of the wing of the Small Magellanic Cloud, two to three thousand parsecs from the main bar. It is the brightest member of an open cluster discovered in 1958 [11] and then listed as LIN 107. [5] It lies close to the massive NGC 602 cluster and is sometimes considered to be just a condensation within a large stellar association including NGC 602. It is referred to as NGC 602c, where NGC 602a is the prominent main cluster. [12]
Although the Small Magellanic Cloud lies mostly within the constellation Tucana, the wing extends into Hydrus. The NGC 602 region, including AB8, lies within the borders of the constellation Hydrus.
The spectrum of AB8 shows many strong emission lines of highly ionized carbon and oxygen that clearly identify it is a WO star although the exact subclass is unclear. It has previously been classified as WO3, [13] but it now considered to be the cooler WO4. The emission lines dominate the spectrum, but the profile of many lines shows an absorption wing produced by a hot class O companion. The profiles are variable due to doppler shifting produced as the stars orbit at high velocity. [4] The electromagnetic radiation of the primary is concentrated in the far ultraviolet, so the visual and ultraviolet spectra are dominated by the secondary star. Classification of both stars is complicated by the line blending. The first SMC WR catalogue considered it as "WC4? + OB". [10] [14]
AB8 has not been detected as an x-ray source. This is unexpected because close pairs of hot luminous stars are expected to produce copious x-ray emission from colliding winds. The colliding winds are detected via their impact on emission lines in the spectrum, [3] but not the x-rays. [4]
The spectrum of AB8 shows radial velocity variation of the WR emission lines and narrower absorption lines with a well-defined period of 16.6 days. The relative size of the spectral line Doppler shifts indicates the mass ratio of the two stars, which shows that the primary has about one third the mass of the secondary. The shape of the radial velocity curves can be used to derive the eccentricity of the orbits which are almost circular. Eclipses of the stars are not seen, although models of the system predict a wind eclipse that should produce a detectable brightness change. Distinct changes in the spectral line profiles are seen varying in sync with the orbital phase. An orbital inclination of 40° is derived to most closely match all the observations. [3]
The total visual brightness of AB8 can be determined fairly accurately at absolute magnitude (MV) −6.1, 23,500 times brighter than the sun. The components cannot be observed separately and the contribution from each component can only be estimated. The O star dominates the visual spectrum and produces around 70% of the brightness, leading to MV−5.9, and −4.9 for the primary. [4]
The effective temperatures of the stars can be calculated directly by modelling the atmospheres of both stars to reproduce the observed spectrum in detail. This method results in a temperature of 141,000 K for the WR component and 45,000 K for the O companion. The effective temperature is useful for modelling the atmosphere and comparison between stars, but a typical "observed" temperature at optical depth 2/3 can be significantly different for stars with a dense stellar wind. In the case of the WR primary star, the optical depth temperature is 115,000 K. [4]
The simplest way to measure the luminosity of a star is to observe its radiated output at all wavelengths (the spectral energy distribution or SED) and sum them together. Unfortunately this is impractical for AB8 because the majority of the radiation occurs in the far ultraviolet. A more common method is to measure the visual luminosity and apply a bolometric correction to give the total luminosity at all wavelengths, although the size of the bolometric correction is extremely sensitive to the effective temperature. Modelling the atmospheres gives luminosities for the WR and O component of over 1,000,000 L☉ and 708,000 L☉ respectively. [4] Deriving the relative luminosities of the two components from the profile of the OVI resonance line gives a luminosity of 250,000 L☉ for the primary, but this would imply an unreasonably low temperature. [3]
The radius of a star with strong stellar wind is poorly-defined since any strong density discontinuity that might be defined as a surface is entirely hidden from view. Commonly used definitions of the radius in such cases include: a temperature radius; an optical depth radius; and a transformed radius. The differences are only significant in the case of the WR component. The temperature radius is the radius of a uniform disc that would produce the known luminosity at the calculated effective temperature, and is 2 R☉. The radius at optical depth 2/3 is 3 R☉. The transformed radius is a value used in the modelling of the atmosphere and is 2.5 M☉. [15] The O component radius is 14-15 R☉. [4]
The masses of each component in the AB8 system can be determined from the binary orbit. With the assumption of an inclination of 40°, the derived masses are 19 M☉ and 61 M☉. The secondary is more massive and visually brighter, but not more luminous. [4]
Both components of AB8 have powerful stellar winds and are losing mass rapidly. Wind speeds of 3,700 km/s for the primary and 3,200 km/s for the secondary are calculated, [4] with mass loss from the primary a billion times higher than the sun, and 10 million times higher for the secondary star. [16] The WR wind is sufficiently dense that it obscures the photosphere of the star, leading to the unusual spectrum consisting almost entirely of emission lines broadened by the rapid expansion and turbulence of the wind. The high wind speeds and closeness of the stars mean that where the winds collide the material is shocked to temperatures over 500 million K. [3]
A model has been developed to show the evolution of a binary system leading to the currently observed state of AB8. The initial state has a 150 M☉ primary and 45 M☉ secondary. The more massive primary leaves the main sequence after approximately 2.2 million years and overflows its roche lobe. In around 100,000 years it transfers 25 M☉ to the secondary star. The primary continues to lose mass rapidly for several hundred thousand years, while the secondary maintains approximately the same mass. At a model age of three million years, the system matches the current observations. [4]
The original chemical abundances of the two stellar components are assumed to be typical of the SMC, with metallicity 1/5th to 1/10th of solar levels. In its current state, the WR component shows dramatically different abundances, with hydrogen and nitrogen entirely absent. It consists of 30% carbon, 30% oxygen, and the remainder mostly helium. It may still be fusing helium in its core, but WO stars are expected to have depleted their core helium and started to fuse carbon or even heavier elements. The O type companion is still a core hydrogen burning main sequence star. [17]
In both the primary and secondary star, their cores will eventually collapse, resulting in a supernova explosion. The initially-more massive primary will collapse first, as a type Ic supernova, within 10,000 years. The secondary will live on as a single star, or possibly in a binary with a supernova remnant, for a few million years before it also explodes as a supernova, probably a type Ib. Massive stars at SMC metallicity may produce low luminosity supernovae, or even collapse directly to a black hole without a visible explosion. [18]
Wolf–Rayet stars, often abbreviated as WR stars, are a rare heterogeneous set of stars with unusual spectra showing prominent broad emission lines of ionised helium and highly ionised nitrogen or carbon. The spectra indicate very high surface enhancement of heavy elements, depletion of hydrogen, and strong stellar winds. The surface temperatures of known Wolf–Rayet stars range from 20,000 K to around 210,000 K, hotter than almost all other kinds of stars. They were previously called W-type stars referring to their spectral classification.
V509 Cassiopeiae is one of two yellow hypergiant stars found in the constellation Cassiopeia, which also contains Rho Cassiopeiae.
A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra. More commonly, hypergiants are classed as Ia-0 or Ia+, but red supergiants are rarely assigned these spectral classifications. Astronomers are interested in these stars because they relate to understanding stellar evolution, especially star formation, stability, and their expected demise as supernovae. Notable examples of hypergiants include the Pistol Star, a blue hypergiant located close to the Galactic Center and one of the most luminous stars known; Rho Cassiopeiae, a yellow hypergiant that is one of the brightest to the naked eye; and Mu Cephei (Herschel's "Garnet Star"), one of the largest and brightest stars known.
R136a1 is one of the most massive and luminous stars known, at nearly 200 M☉ and nearly 4.7 million L☉, and is also one of the hottest, at around 46,000 K. It is a Wolf–Rayet star at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the Tarantula Nebula in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter than the cluster and can only be resolved using speckle interferometry.
HD 5980 is a multiple star system on the outskirts of NGC 346 in the Small Magellanic Cloud (SMC) and is one of the brightest stars in the SMC.
AB7, also known as SMC WR7, is a binary star in the Small Magellanic Cloud. A Wolf–Rayet star and a supergiant companion of spectral type O orbit in a period of 19.56 days. The system is surrounded by a ring-shaped nebula known as a bubble nebula.
WR 22, also known as V429 Carinae or HR 4188, is an eclipsing binary star system in the constellation Carina. The system contains a Wolf-Rayet (WR) star that is one of the most massive and most luminous stars known, and is also a bright X-ray source due to colliding winds with a less massive O class companion. Its eclipsing nature and apparent magnitude make it very useful for constraining the properties of luminous hydrogen-rich WR stars.
WR 142 is a Wolf-Rayet star in the constellation Cygnus, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova. It is suspected to be a binary star with a companion orbiting about 1 AU away.
Melnick 34, also called BAT99-116, is a binary Wolf–Rayet star near R136 in the 30 Doradus complex in the Large Magellanic Cloud. Both components are amongst the most massive and most luminous stars known, and the system is the most massive known binary system.
BAT99-98 is a Wolf–Rayet star located in the Large Magellanic Cloud, in NGC 2070 near the R136 cluster in the Tarantula Nebula. At 226 M☉ and 5,000,000 L☉ it is one of the most massive and luminous stars currently known.
WR 102 is a Wolf–Rayet star in the constellation Sagittarius, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova.
CD Crucis, also known as HD 311884, is an eclipsing binary star system in the constellation Crux. It is around 14,000 light years away near the faint open cluster Hogg 15. The binary contains a Wolf–Rayet star and is also known as WR 47.
LH 41-1042 is a Wolf–Rayet star located in the Large Magellanic Cloud (LMC). It is an extremely rare member of the WO oxygen sequence, the second to be discovered in the LMC and one of only three found so far in that galaxy.
WR 30a is a massive spectroscopic binary in the Milky Way galaxy, in the constellation Carina. The primary is an extremely rare star on the WO oxygen sequence and the secondary a massive class O star. It appears near the Carina Nebula but is much further away.
WR 137 is a variable Wolf-Rayet star located around 6,000 light years away from Earth in the constellation of Cygnus.
R145 is a spectroscopic binary star in the Tarantula Nebula in the Large Magellanic Cloud located in the constellation Dorado. Both components are amongst the most luminous known.
WR 9 is a spectroscopic binary in the constellation Puppis consisting of a Wolf-Rayet star and a class O star. It is around 12,000 light years away.
R71 is a star in the Large Magellanic Cloud (LMC) in the constellation Mensa. It is classified as a luminous blue variable and is one of the most luminous stars in the LMC. It lies three arc-minutes southwest of the naked-eye star β Mensae.
NGC 6822-WR 12 is a WN-type Wolf-Rayet star located in the galaxy NGC 6822, about 1.54 million light years away in the constellation of Sagittarius. NGC 6822-WR 12 was the first Wolf-Rayet star to be discovered in the galaxy, and is one of only four known in the galaxy.
BAT99-123, also known as Brey 93, is a rare WO-type Wolf–Rayet star located in the Large Magellanic Cloud, about 160,000 light years away in Dorado. BAT99-123 was the first WO star discovered in the LMC, and only 3 are known to exist in the galaxy, the other two being LH 41-1042 and LMC195-1.