Actinidine

Last updated
Actinidine
Structural formula of actinidine.svg
Actinidine Space-Filling.png
Names
Preferred IUPAC name
(7S)-4,7-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine
Identifiers
3D model (JSmol)
81308
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C10H13N/c1-7-3-4-9-8(2)5-11-6-10(7)9/h5-7H,3-4H2,1-2H3/t7-/m0/s1 Yes check.svgY
    Key: ZHQQRIUYLMXDPP-ZETCQYMHSA-N Yes check.svgY
  • InChI=1/C10H13N/c1-7-3-4-9-8(2)5-11-6-10(7)9/h5-7H,3-4H2,1-2H3/t7-/m0/s1
    Key: ZHQQRIUYLMXDPP-ZETCQYMHBZ
  • C[C@@H](CC1)C2=C1C(C)=CN=C2
  • n1cc(c2c(c1)[C@H](CC2)C)C
Properties
C10H13N
Molar mass 147.221 g·mol−1
Melting point <25 °C (77 °F; 298 K)
Boiling point 100 to 103 °C (212 to 217 °F; 373 to 376 K) at 9 mmHg [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Actinidine is an iridoid produced in nature by a wide variety of plants and animals. It was the first cyclopentanoid monoterpene alkaloid to be discovered. [2] It is one of several compounds that may be extracted from the valerian (Valeriana officinalis) root [3] and silver vine ( Actinidia polygama ), as well as several types of insects in the larval and imaginal stages. [4] Actinidine is a cat attractant, with effects like those of nepetalactone, the active compound found in catnip. [5]

Certain species of stick insects, including Megacrania batesii and Megacrania tsudai , possess a chemical defense mechanism which involves the secretion of an actinidine-containing substance from the prothoracic glands, when threatened by a predator. [6]

Biosynthesis

A potential biosynthesis of actinidine from L-citronellal is shown below. [7]

Actinidine pathway.gif

Related Research Articles

<span class="mw-page-title-main">Alkaloid</span> Class of naturally occurring chemical compounds

Alkaloids are a class of basic, naturally occurring organic compounds that contain at least one nitrogen atom. This group also includes some related compounds with neutral and even weakly acidic properties. Some synthetic compounds of similar structure may also be termed alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen or sulfur. More rarely still, they may contain elements such as phosphorus, chlorine, and bromine.

<span class="mw-page-title-main">Valerian (herb)</span> Species of flowering plant

Valerian is a perennial flowering plant native to Europe and Asia. In the summer when the mature plant may have a height of 1.5 metres, it bears sweetly scented pink or white flowers that attract many fly species, especially hoverflies of the genus Eristalis. It is consumed as food by the larvae of some Lepidoptera species, including the grey pug.

<span class="mw-page-title-main">Nepetalactone</span> Chemical compound

Nepetalactone is a name for multiple iridoid analog stereoisomers. Nepetalactones are produced by Nepeta cataria (catnip) and many other plants belonging to the genus Nepeta, in which they protect these plants from herbivorous insects by functioning as insect repellents. They are also produced by many aphids, in which they are sex pheromones. Nepetalactones are cat attractants, and cause the behavioral effects that catnip induces in domestic cats. However, they affect visibly only about two thirds of adult cats. They produce similar behavioral effects in many other felids, especially in lions and jaguars. In 1941, the research group of Samuel M. McElvain was the first to determine the structures of nepetalactones and several related compounds.

<span class="mw-page-title-main">3-Methylbutanoic acid</span> Carboxylic acid with chemical formula (CH3)2CHCH2CO2H CH3CH2

3-Methylbutanoic acid, also known as β-methylbutyric acid or more commonly isovaleric acid, is a branched-chain alkyl carboxylic acid with the chemical formula (CH3)2CHCH2CO2H. It is classified as a short-chain fatty acid. Like other low-molecular-weight carboxylic acids, it has an unpleasant odor. The compound occurs naturally and can be found in many foods, such as cheese, soy milk, and apple juice.

<span class="mw-page-title-main">Iridoid</span> Class of chemical compounds

Iridoids are a type of monoterpenoids in the general form of cyclopentanopyran, found in a wide variety of plants and some animals. They are biosynthetically derived from 8-oxogeranial. Iridoids are typically found in plants as glycosides, most often bound to glucose.

<i>Megacrania batesii</i> Species of insect

Megacrania batesii, commonly known as the peppermint stick insect, is an unusual species of stick insect found in northeastern Australia, the Bismarck Archipelago, the Solomon Islands, New Guinea, and possibly as far north as the Philippines. It is notable for its aposematic coloration, as well as its robust chemical defense mechanism. Its common name refers to the irritating fluid — with an odor resembling peppermint — that it sprays as a defensive action from a pair of glands located at its prothorax when threatened, as well as the cylindrical, twig-like shape of its body. A member of the subfamily Megacraniinae, it was first described by English naturalist and explorer Henry Walter Bates in 1865.

A cat pheromone is a chemical molecule, or compound, that is used by cats and other felids for communication. These pheromones are produced and detected specifically by the body systems of cats and evoke certain behavioural responses.

<span class="mw-page-title-main">Catnip</span> Nepeta cataria; species of plant

Nepeta cataria, commonly known as catnip, catswort, catwort, and catmint, is a species of the genus Nepeta in the family Lamiaceae, native to southern and eastern Europe, the Middle East, Central Asia, and parts of China. It is widely naturalized in northern Europe, New Zealand, and North America. The common name catmint can also refer to the genus as a whole.

<i>Actinidia polygama</i> Species of plant

Actinidia polygama is a species of kiwifruit in the Actinidiaceae family. It grows in the mountainous areas of Korea, Japan and China at elevations between 500 and 1,900 metres.

<span class="mw-page-title-main">Loline alkaloid</span> Class of chemical compounds

A loline alkaloid is a member of the 1-aminopyrrolizidines, which are bioactive natural products with several distinct biological and chemical features. The lolines are insecticidal and insect-deterrent compounds that are produced in grasses infected by endophytic fungal symbionts of the genus Epichloë. Lolines increase resistance of endophyte-infected grasses to insect herbivores, and may also protect the infected plants from environmental stresses such as drought and spatial competition. They are alkaloids, organic compounds containing basic nitrogen atoms. The basic chemical structure of the lolines comprises a saturated pyrrolizidine ring, a primary amine at the C-1 carbon, and an internal ether bridge—a hallmark feature of the lolines, which is uncommon in organic compounds—joining two distant ring carbons. Different substituents at the C-1 amine, such as methyl, formyl, and acetyl groups, yield loline species that have variable bioactivity against insects. Besides endophyte–grass symbionts, loline alkaloids have also been identified in some other plant species; namely, Adenocarpus species and Argyreia mollis.

<span class="mw-page-title-main">Aucubin</span> Chemical compound

Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Iridoids decrease the growth rates of many generalist herbivores.

<i>Lonicera tatarica</i> Species of honeysuckle

Lonicera tatarica is a species of honeysuckle known by the common name Tatarian honeysuckle. Native to Eurasia, the plant is one of several exotic bush honeysuckles present in North America, being considered an invasive species there.

<i>Acalypha indica</i> Species of flowering plant

Acalypha indica is an herbaceous annual that has catkin-like inflorescences with cup-shaped involucres surrounding the minute flowers. It is mainly known for its root being attractive to domestic cats, and for its various medicinal uses. It occurs throughout the Tropics.

<span class="mw-page-title-main">Hair-pencil</span> Pheromone signaling structures in lepidopteran males

Hair-pencils and coremata are pheromone signaling structures present in lepidopteran males. Males use hair-pencils in courtship behaviors with females. The pheromones they excrete serve as both aphrodisiacs and tranquilizers to females as well as repellents to conspecific males. Hair-pencil glands are stored inside the male until courtship begins, at which point they are forced out of the body by sclerotized levers present on the abdomen. Coremata are very similar structures. Their exact definition is confused by early descriptions but they are more specifically defined as the internal, glandular, eversible structures that bear the hair-pencils and can be voluntarily inflated with hemolymph or air.

<span class="mw-page-title-main">Iridomyrmecin</span> Chemical compound

Iridomyrmecin is a defensive chemical, classified as an iridoid, isolated from ants of the genus Iridomyrmex. It has also evolved into a sex pheromone in wasps such as Leptopilina, with host species using the smell of iridomyrmecin as a way of detecting the presence of the parasitoid wasps. Iridomyrmecin is also found in a variety of plants including Actinidia polygama.

<span class="mw-page-title-main">Phenylethanoid</span>

Phenylethanoids are a type of phenolic compounds characterized by a phenethyl alcohol structure. Tyrosol and hydroxytyrosol are examples of such compounds.

<span class="mw-page-title-main">Verbenalin</span> Chemical compound

Verbenalin is a chemical compound, classified as an iridoid glucoside, that is found in Verbena officinalis. It is one of the sleep-promoting (soporific) components in Verbena officinalis.

<span class="mw-page-title-main">Nepetalactol</span> Chemical compound

Nepetalactol is an iridoid. It is produced from 8-oxogeranial by the enzyme iridoid synthase. Nepetalactol is a substrate for the enzyme iridoid oxidase (IO) which produces 7-deoxyloganetic acid. It has been identified in Actinidia polygama as a major cat attractant, and a mosquito repellent. The fact that mosquitos bite cats with nepetalactol on their fur less often may explain why cats are attracted to silver vine in the first place.

<span class="mw-page-title-main">Iridodial</span> Chemical compound

Iridodial is an iridoid. It is produced from 8-oxogeranial by the enzyme iridoid synthase (IS). Iridodial is one of the substrates for the enzyme iridoid oxidase (IO) which produces 7-deoxyloganetic acid.

<span class="mw-page-title-main">Insect pheromones</span> Neurotransmitters used by insects

Insect pheromones are neurotransmitters that serve the chemical communication between individuals of an insect species. They thus differ from kairomones, in other words, neurotransmitters that transmit information to non-species organisms. Insects produce pheromones in special glands and release them into the environment. In the pheromone receptors of the sensory cells of the recipient, they produce a nerve stimulus even in very low concentrations, which ultimately leads to a behavioral response. Intraspecific communication of insects via these substances takes place in a variety of ways and serves, among other things, to find sexual partner, to maintain harmony in a colony of socially living insects, to mark territories or to find nest sites and food sources.

References

  1. Sakan T (1959). "On the Structure of Actinidine and Matatabilactone, the Effective Components of Actinidia polygama". Bulletin of the Chemical Society of Japan. 32 (3): 315–316. doi:10.1246/bcsj.32.315.
  2. Tsutsui M, Tsutsui EA (1959). "Diterpenoids". Chemical Reviews. 59 (6): 1031–1075. doi:10.1021/cr50030a003.
  3. Janot MM, Guilhem J, Contz O, Venera G, Cionga E (1979). "Contribution to the study of valerian alcaloids (Valeriana officinalis L.): actinidine and naphthyridylmethylketone, a new alkaloid". Ann. Pharm. Fr. (in French). 37 (9–10): 413–20. PMID   547813.
  4. Weibel DB, Oldham NJ, Feld B, Glombitza G, Dettner K, Boland W (2001). "Iridoid biosynthesis in staphylinid rove beetles (Coleoptera: Staphylinidae, Philonthinae)". Insect Biochemistry and Molecular Biology. 31 (6–7): 583–591. doi:10.1016/s0965-1748(00)00163-6. PMID   11267897.
  5. Lichman BR, Godden GT, Hamilton JP, Palmer L, Kamileen MO, Zhao D, Vaillancourt B, Wood JC, Sun M, Kinser TJ, Henry LK (2020-05-01). "The evolutionary origins of the cat attractant nepetalactone in catnip". Science Advances. 6 (20): eaba0721. Bibcode:2020SciA....6..721L. doi: 10.1126/sciadv.aba0721 . ISSN   2375-2548. PMC   7220310 . PMID   32426505.
  6. Wu I, Liu H, Chen Y, Tsai C, Yu Y, Hsiao C, Yeh W (2020). "Life cycles, phenology and genetic structure of endangered Megacrania tsudai Shiraki (Phasmatodea: Phasmatidae): Male individuals from a geographic parthenogenesis species". Entomological Science. 23 (2): 183–192. doi:10.1111/ens.12410. S2CID   216322536.
  7. Funayama S, Cordell GA, eds. (2015). "14: Alkaloids Derived from Terpenoids". Alkaloids. Academic Press. pp. 233–255.