Aphanizomenon flos-aquae | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Cyanobacteria |
Class: | Cyanophyceae |
Order: | Nostocales |
Family: | Aphanizomenonaceae |
Genus: | Aphanizomenon |
Species: | A. flos-aquae |
Binomial name | |
Aphanizomenon flos-aquae (Linnaeus) Ralfs ex Bornet & Flahault, 1888 | |
Aphanizomenon flos-aquae is a diverse group of cyanobacteria with both toxic and non-toxic [1] [2] strains found in brackish and freshwater environments globally, including the Baltic Sea and the Great Lakes. Recent genome sequencing efforts have identified 18 distinct varieties [3] of Aphanizomenon flos-aquae, revealing its genetic complexity.
Cyanobacteria were the first organisms to achieve photosynthesis. [4] Chlorophyll and phycocyanine—two pigments contained in cyanobacteria—allow the vegetative cells to absorb light and transform it into nutrients. [4]
The genus Aphanizomenon is defined as a cluster of eight morphospecies, including Aphanizomenon flos-aquae. [5]
One of the main morphological characteristics of the genus Aphanizomenon is the tendency to form fascicles of trichomes containing mainly vegetative cells. [6] [5]
The individual vegetative cells that form Aphanizomenon flos-aquae are cylindrical and elongated. Each cell is composed of hyaline. [5]
Aphanizomenon flos-aquae forms typically bent trichomes that are grouped into fascicles up to 2 cm (0.79 in) long. [6] These trichomes can also be found as single free-floating units. [5] Within these fascicles, heterocysts often appear at various intervals on the trichomes. [7]
When attached to a trichome, heterocysts import carbohydrates which may act as a reducing agent and an energy source for nitrogen fixation. [8] It has been shown that heterocysts contain a nitrogenase complex which allows them to take part in nitrogen fixation. Other requirements for nitrogen fixation include ATP, low potential electrons, and an anaerobic environment. [8]
The life cycle of Aphanizomenon flos-aquae depends on various environmental conditions such as water temperature, dissolved oxygen content, and pH.
During the winter, Aphanizomenon flos-aquae persists as akinetes deep in the layers of sediment. [7] These dormant cyanobacterial cells will last all season until the water temperature rises again in the spring. During the springtime, the akinetes go through a recruitment phase as they germinate and disperse into the water column. [7] Different species of phytoplankton can provide interspecific competition for Aphanizomenon flos-aquae if they are outnumbered. Due to higher temperatures, and higher pH levels in the summer, Aphanizomenon flos-aquae begin to flourish and eventually form dense mats known as ‘blooms’ in late summer. [7] The blooms dissipate in autumn as the water temperature and pH drop again and the conditions are more favorable to akinete development. [7]
Aphanizomenon flos-aquae can form dense surface aggregations in freshwater (known as "cyanobacterial blooms"). [9] These blooms occur in areas of high nutrient loading, historical or current.
During bloom formation, Aphanizomenon flos-aquae photosynthetically produces biomass. These accumulated mats of biomass can grow due to the concentration of nutrients available in eutrophic ecosystems accompanied by high reproductive rates and water temperatures. [10]
At high concentrations, these blooms can be ecologically harmful to the aquatic species that cohabitate with the cyanobacteria. In addition to their odiferous presence, cyanobacterial blooms have been associated with lowered dissolved oxygen content, increased turbidity, and the accelerated release of nutrients from sediments. [10]
Aphanizomenon flos-aquae (AFA) includes both toxic and non-toxic strains found in various global freshwater sources, with different varieties producing diverse compounds. [11] [12]
The toxicity of A. flos-aquae has been reported in Canada, [13] Germany, [14] [15] and China. [16]
Some Aphanizomenon flos-aquae varieties are known to produce endotoxins – the toxic chemicals released when cells die. Once released (lysed), and ingested, these toxins can damage liver and nerve tissues in mammals.[ citation needed ] In areas where water quality is not closely monitored, the World Health Organization has assessed toxic algae as a health risk, citing the production of anatoxin-a, saxitoxins, and cylindrospermopsin. [17] Dogs have been reported to have become ill or have fatal reactions after swimming in rivers and lakes containing toxic A. flos-aquae.[ citation needed ]
The FDA recognizes wild-harvested AFA as safe for consumption as food or in dietary supplements. [18]
In a 2012 study conducted in Germany, 18 samples of improperly harvested AFA used in supplement products were shown to be cross-contaminated with microcystin. [15] Ten of the eighteen samples exceeded the safety value of 1 microgram of microcystin per gram, with the authors stating that the "distribution and commercial sale of AFA products, whether pure or mixed formulations, for human consumption appear highly questionable." [15]
An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in fresh water or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. An example of a macroscopic algal bloom is a kelp forest.
Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" refers to their bluish green (cyan) color, which forms the basis of cyanobacteria's informal common name, blue-green algae, although as prokaryotes they are not scientifically classified as algae.
Microcystins—or cyanoginosins—are a class of toxins produced by certain freshwater cyanobacteria, commonly known as blue-green algae. Over 250 different microcystins have been discovered so far, of which microcystin-LR is the most common. Chemically they are cyclic heptapeptides produced through nonribosomal peptide synthases.
Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.
Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.
Anabaena circinalis is a species of Gram-negative, photosynthetic cyanobacteria common to freshwater environments throughout the world. Much of the scientific interest in A. circinalis owes to its production of several potentially harmful cyanotoxins, ranging in potency from irritating to lethal. Under favorable conditions for growth, A. circinalis forms large algae-like blooms, potentially harming the flora and fauna of an area.
Anatoxin-a, also known as Very Fast Death Factor (VFDF), is a secondary, bicyclic amine alkaloid and cyanotoxin with acute neurotoxicity. It was first discovered in the early 1960s in Canada, and was isolated in 1972. The toxin is produced by multiple genera of cyanobacteria and has been reported in North America, South America, Central America, Europe, Africa, Asia, and Oceania. Symptoms of anatoxin-a toxicity include loss of coordination, muscular fasciculations, convulsions and death by respiratory paralysis. Its mode of action is through the nicotinic acetylcholine receptor (nAchR) where it mimics the binding of the receptor's natural ligand, acetylcholine. As such, anatoxin-a has been used for medicinal purposes to investigate diseases characterized by low acetylcholine levels. Due to its high toxicity and potential presence in drinking water, anatoxin-a poses a threat to animals, including humans. While methods for detection and water treatment exist, scientists have called for more research to improve reliability and efficacy. Anatoxin-a is not to be confused with guanitoxin, another potent cyanotoxin that has a similar mechanism of action to that of anatoxin-a and is produced by many of the same cyanobacteria genera, but is structurally unrelated.
Cylindrospermopsin is a cyanotoxin produced by a variety of freshwater cyanobacteria. CYN is a polycyclic uracil derivative containing guanidino and sulfate groups. It is also zwitterionic, making it highly water soluble. CYN is toxic to liver and kidney tissue and is thought to inhibit protein synthesis and to covalently modify DNA and/or RNA. It is not known whether cylindrospermopsin is a carcinogen, but it appears to have no tumour initiating activity in mice.
An akinete is an enveloped, thick-walled, non-motile, dormant cell formed by filamentous, heterocyst-forming cyanobacteria under the order Nostocales and Stigonematales. Akinetes are resistant to cold and desiccation. They also accumulate and store various essential material, both of which allows the akinete to serve as a survival structure for up to many years. However, akinetes are not resistant to heat. Akinetes usually develop in strings with each cell differentiating after another and this occurs next to heterocysts if they are present. Development usually occurs during stationary phase and is triggered by unfavorable conditions such as insufficient light or nutrients, temperature, and saline levels in the environment. Once conditions become more favorable for growth, the akinete can then germinate back into a vegetative cell. Increased light intensity, nutrients availability, oxygen availability, and changes in salinity are important triggers for germination. In comparison to vegetative cells, akinetes are generally larger. This is associated with the accumulation of nucleic acids which is important for both dormancy and germination of the akinete. Despite being a resting cell, it is still capable of some metabolic activities such as photosynthesis, protein synthesis, and carbon fixation, albeit at significantly lower levels.
Aphanizomenon is a genus of cyanobacteria that inhabits freshwater lakes and can cause dense blooms. They are unicellular organisms that consolidate into linear (non-branching) chains called trichomes. Parallel trichomes can then further unite into aggregates called rafts. Cyanobacteria such as Aphanizomenon are known for using photosynthesis to create energy and therefore use sunlight as their energy source. Aphanizomenon bacteria also play a big role in the Nitrogen cycle since they can perform nitrogen fixation. Studies on the species Aphanizomenon flos-aquae have shown that it can regulate buoyancy through light-induced changes in turgor pressure. It is also able to move by means of gliding, though the specific mechanism by which this is possible is not yet known.
Nodularins are potent toxins produced by the cyanobacterium Nodularia spumigena, among others. This aquatic, photosynthetic cyanobacterium forms visible colonies that present as algal blooms in brackish water bodies throughout the world. The late summer blooms of Nodularia spumigena are among the largest cyanobacterial mass occurrences in the world. Cyanobacteria are composed of many toxic substances, most notably of microcystins and nodularins: the two are not easily differentiated. A significant homology of structure and function exists between the two, and microcystins have been studied in greater detail. Because of this, facts from microcystins are often extended to nodularins.
Planktothrix is a diverse genus of filamentous cyanobacteria observed to amass in algal blooms in water ecosystems across the globe. Like all Oscillatoriales, Planktothrix species have no heterocysts and no akinetes. Planktothrix are unique because they have trichomes and contain gas vacuoles unlike typical planktonic organisms. Previously, some species of the taxon were grouped within the genus Oscillatoria, but recent work has defined Planktothrix as its own genus. A tremendous body of work on Planktothrix ecology and physiology has been done by Anthony E. Walsby, and the 55.6 kb microcystin synthetase gene which gives these organisms the ability to synthesize toxins has been sequenced. P. agardhii is an example of a type species of the genus. P. agardhii and P. rubescens are commonly observed in lakes of the Northern Hemisphere where they are known producers of potent hepatotoxins called microcystins.
Microcystis is a genus of freshwater cyanobacteria that includes the harmful algal bloom-forming Microcystis aeruginosa. Many members of a Microcystis community can produce neurotoxins and hepatotoxins, such as microcystin and cyanopeptolin. Communities are often a mix of toxin-producing and nonproducing isolates.
Microcystis aeruginosa is a species of freshwater cyanobacteria that can form harmful algal blooms of economic and ecological importance. They are the most common toxic cyanobacterial bloom in eutrophic fresh water. Cyanobacteria produce neurotoxins and peptide hepatotoxins, such as microcystin and cyanopeptolin. Microcystis aeruginosa produces numerous congeners of microcystin, with microcystin-LR being the most common. Microcystis blooms have been reported in at least 108 countries, with the production of microcystin noted in at least 79.
Raphidiopsis raciborskii is a freshwater cyanobacterium.
Gloeotrichia is a large (~2 mm) colonial genus of Cyanobacteria, belonging to the order Nostocales. The name Gloeotrichia is derived from the appearance of the filamentous body with prominent mucilage matrix. Found in lakes across the globe, gloeotrichia are notable for the important roles that they play in the nitrogen and phosphorus cycles. Gloeotrichia are also a genus of concern for lake managers, as they have been shown to push lakes towards eutrophication and to produce potentially deadly Microcystin-LR.
Guanitoxin (GNT), formerly known as anatoxin-a(S) "Salivary", is a naturally occurring cyanotoxin commonly isolated from cyanobacteria. It is a potent covalent acetylcholinesterase inhibitor, and thus a potent rapid acting neurotoxin which in cases of severe exposure can lead to death. Guanitoxin was first structurally characterized in 1989, and consists of a cyclic N-hydroxyguanidine organophosphate with a phosphate ester moiety.
Susanna Wood is a New Zealand scientist whose research focuses on understanding, protecting and restoring New Zealand's freshwater environments. One of her particular areas of expertise is the ecology, toxin production, and impacts of toxic freshwater cyanobacteria in lakes and rivers. Wood is active in advocating for the incorporation of DNA-based tools such as metabarcoding, genomics and metagenomics for characterising and understanding aquatic ecosystems and investigating the climate and anthropogenic drivers of water quality change in New Zealand lakes. She has consulted for government departments and regional authorities and co-leads a nationwide programme Lakes380 that aims to obtain an overview of the health of New Zealand's lakes using paleoenvironmental reconstructions. Wood is a senior scientist at the Cawthron Institute. She has represented New Zealand internationally in cycling.
Aphanizomenon ovalisporum is a filamentous cyanobacteria present in many algal blooms.
Klamath Lake AFA, also called Klamath Lake Blue Green Algae and Klamath AFA, is a strain of Aphanizomenon flos-aquae. Small amounts of this cyanobacteria can be found in bodies of water worldwide, but it is notable for growing prolifically in Upper Klamath Lake, Oregon. Klamath AFA is a blue-green algae that has been harvested wild from Upper Klamath Lake since the 1980s and used as a dietary supplement.