Aphanizomenon

Last updated

Aphanizomenon
Aphanizomenon colony fluorescence microscopy.jpg
Aphanizomenon flos-aquae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Cyanobacteria
Class: Cyanophyceae
Order: Nostocales
Family: Aphanizomenonaceae
Genus: Aphanizomenon
A.Morren ex Bornet & Flahault, 1888
Species

Aphanizomenon flos-aquae Aphanizomenon gracile Aphanizomenon issatschenkoi Aphanizomenon ovalisporum

Contents

Aphanizomenon is a genus of cyanobacteria that inhabits freshwater lakes and can cause dense blooms. They are unicellular organisms that consolidate into linear (non-branching) chains called trichomes. Parallel trichomes can then further unite into aggregates called rafts. [1] Cyanobacteria such as Aphanizomenon are known for using photosynthesis to create energy and therefore use sunlight as their energy source. [2] Aphanizomenon bacteria also play a big role in the Nitrogen cycle since they can perform nitrogen fixation. Studies on the species Aphanizomenon flos-aquae have shown that it can regulate buoyancy through light-induced changes in turgor pressure. [3] It is also able to move by means of gliding, though the specific mechanism by which this is possible is not yet known.

Ecology

Overcoming phosphate limitation

Aphanizomenon may become dominant in a water body partially due to their ability to induce phosphate-limitation in other phytoplankton while also increasing phosphate availability to itself through release of cylindrospermopsin. [4] The cylindrospermopsin causes other phytoplankton to increase their alkaline phosphatase activity, increasing inorganic phosphate availability in the water to Aphanizomenon during times when phosphate becomes limiting.

Photosynthesis

All species in the cyanobacteria phylum can perform photosynthesis. They use a similar photosynthesis to plants, using two photosystems which is called the Z-scheme. This is different from other photosynthetic bacteria that only use one photosystem and do not have thylakoids. Cyanobacteria species such as Aphanizomenon also use Oxygen as their final electron acceptor in the Electron Transport Chain, which is also different from other photosynthetic bacteria, which perform a type of photosynthesis called anoxygenic photosynthesis. [5]

Nitrogen fixation

Aphanizomenon are a special type of cyanobacteria called heterocysts, which are capable of producing biologically useful nitrogen (ammonium) by the process of nitrogen fixation from atmospheric nitrogen.

A large proportion (between 35 and 50%) of fixed nitrogen may be released into the surrounding water, providing an important source of biologically available nitrogen to the ecosystem. [6] [7] Since Aphanizomenon are one of the few species of bacteria that can perform nitrogen fixation, other bacterial species that use nitrogen ions as a reactant will start to rely on the species as a source of usable nitrogen. This will cause a bacterial bloom to form, which is a condition under which the number of bacterial colonies in an area will suddenly increase. [8]

Algal blooms

Aphanizomenon can produce algal blooms from producing usable nitrogen causing other bacterial species to form colonies around the Aphanizomenon. Algal Blooms formed from Aphanizomenon species tend to be very toxic and create a variety of toxins. These blooms may also create dead zones in the water. This ends up being bad for the ecosystem, since it can hurt many of the plants and animals living around it. [9]

Toxin production

Aphanizomenon species may produce cyanotoxins including cylindrospermospin (CYN), lipopolysaccharides (LPS), anatoxin-a, saxitoxin and BMAA. [10] [11] Though not all Aphanizomenon produce cyanotoxins, many do. CYNs are a toxin that is especially toxic for the liver and kidney, thought to inhibit protein synthesis. LPSs are found in the cellular membrane of gram-negative bacterial cells and is released when the cellular membrane is degraded. The releasing of LPSs in animals can cause a severe immune response causing it to be very toxic for animals. Anatoxin-a is a type of anatoxin, it is normally released during algal blooms in lakes, causing exposure to animals around it. Anatoxin-a is toxic to the nerves in animals and is very lethal to humans with a lethal dose thought to be less than 5 mg. [12] Similarly to anatoxin-a, BMAAs are another type of neurotoxin that lingers inside animals for longer than anatoxin-a. It will keep affecting animals even after an algal bloom dies down. Last, saxitoxins is yet another type of neurotoxin known to be released by a species of Aphanizomenon. It interrupts nerve transmissions to and from the brain, causing it to be very toxic. [13]

Colony formation

Aphanizomenon flos-aquae bloom on the Upper Klamath Lake, Oregon Aphanizomenon Bloom Upper Klamath Lake USGS.jpg
Aphanizomenon flos-aquae bloom on the Upper Klamath Lake, Oregon

Aphanizomenon may form large colonies as a defense against herbivore grazing, especially Daphnia in freshwater. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Algal bloom</span> Spread of planktonic algae in water

An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term algae encompasses many types of aquatic photosynthetic organisms, both macroscopic multicellular organisms like seaweed and microscopic unicellular organisms like cyanobacteria. Algal bloom commonly refers to the rapid growth of microscopic unicellular algae, not macroscopic algae. An example of a macroscopic algal bloom is a kelp forest.

<span class="mw-page-title-main">Cyanobacteria</span> Phylum of photosynthesising prokaryotes

Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name cyanobacteria refers to their color, which similarly forms the basis of cyanobacteria's common name, blue-green algae, although they are not usually scientifically classified as algae. They appear to have originated in a freshwater or terrestrial environment. Sericytochromatia, the proposed name of the paraphyletic and most basal group, is the ancestor of both the non-photosynthetic group Melainabacteria and the photosynthetic cyanobacteria, also called Oxyphotobacteria.

<span class="mw-page-title-main">Microcystin</span> Cyanotoxins produced by blue-green algae

Microcystins—or cyanoginosins—are a class of toxins produced by certain freshwater cyanobacteria, commonly known as blue-green algae. Over 250 different microcystins have been discovered so far, of which microcystin-LR is the most common. Chemically they are cyclic heptapeptides produced through nonribosomal peptide synthases.

<span class="mw-page-title-main">Florida Bay</span> The bay between the southern end of the Florida mainland and the Florida Keys in the United States

Florida Bay is the bay located between the southern end of the Florida mainland and the Florida Keys in the United States. It is a large, shallow estuary that while connected to the Gulf of Mexico, has limited exchange of water due to various shallow mudbanks covered with seagrass. The banks separate the bay into basins, each with its own unique physical characteristics.

<i>Trichodesmium</i> Genus of bacteria

Trichodesmium, also called sea sawdust, is a genus of filamentous cyanobacteria. They are found in nutrient poor tropical and subtropical ocean waters. Trichodesmium is a diazotroph; that is, it fixes atmospheric nitrogen into ammonium, a nutrient used by other organisms. Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen fixation in marine systems globally. Trichodesmium is the only known diazotroph able to fix nitrogen in daylight under aerobic conditions without the use of heterocysts.

<span class="mw-page-title-main">Cyanotoxin</span> Toxin produced by cyanobacteria

Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.

<span class="mw-page-title-main">Algal mat</span> Microbial mat that forms on the surface of water or rocks

Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.

<span class="mw-page-title-main">Paralytic shellfish poisoning</span> Syndrome of shellfish poisoning

Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.

<i>Aphanizomenon flos-aquae</i> Species of bacterium

Aphanizomenon flos-aquae is a brackish and freshwater species of cyanobacteria found around the world, including the Baltic Sea and the Great Lakes.

<i>Anabaena circinalis</i> Species of bacterium

Anabaena circinalis is a species of Gram-negative, photosynthetic cyanobacteria common to freshwater environments throughout the world. Much of the scientific interest in A. circinalis owes to its production of several potentially harmful cyanotoxins, ranging in potency from irritating to lethal. Under favorable conditions for growth, A. circinalis forms large algae-like blooms, potentially harming the flora and fauna of an area.

<span class="mw-page-title-main">Anatoxin-a</span> Chemical compound

Anatoxin-a, also known as Very Fast Death Factor (VFDF), is a secondary, bicyclic amine alkaloid and cyanotoxin with acute neurotoxicity. It was first discovered in the early 1960s in Canada, and was isolated in 1972. The toxin is produced by multiple genera of cyanobacteria and has been reported in North America, South America, Central America, Europe, Africa, Asia, and Oceania. Symptoms of anatoxin-a toxicity include loss of coordination, muscular fasciculations, convulsions and death by respiratory paralysis. Its mode of action is through the nicotinic acetylcholine receptor (nAchR) where it mimics the binding of the receptor's natural ligand, acetylcholine. As such, anatoxin-a has been used for medicinal purposes to investigate diseases characterized by low acetylcholine levels. Due to its high toxicity and potential presence in drinking water, anatoxin-a poses a threat to animals, including humans. While methods for detection and water treatment exist, scientists have called for more research to improve reliability and efficacy. Anatoxin-a is not to be confused with guanitoxin, another potent cyanotoxin that has a similar mechanism of action to that of anatoxin-a and is produced by many of the same cyanobacteria genera, but is structurally unrelated.

<span class="mw-page-title-main">Cylindrospermopsin</span> Chemical compound

Cylindrospermopsin is a cyanotoxin produced by a variety of freshwater cyanobacteria. CYN is a polycyclic uracil derivative containing guanidino and sulfate groups. It is also zwitterionic, making it highly water soluble. CYN is toxic to liver and kidney tissue and is thought to inhibit protein synthesis and to covalently modify DNA and/or RNA. It is not known whether cylindrospermopsin is a carcinogen, but it appears to have no tumour initiating activity in mice.

<span class="mw-page-title-main">Harmful algal bloom</span> Population explosion of organisms that can kill marine life

A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".

<span class="mw-page-title-main">Bacterioplankton</span> Bacterial component of the plankton that drifts in the water column

Bacterioplankton refers to the bacterial component of the plankton that drifts in the water column. The name comes from the Ancient Greek word πλανκτος, meaning "wanderer" or "drifter", and bacterium, a Latin term coined in the 19th century by Christian Gottfried Ehrenberg. They are found in both seawater and freshwater.

<i>Planktothrix</i> Genus of bacteria

Planktothrix is a diverse genus of filamentous cyanobacteria observed to amass in algal blooms in water ecosystems across the globe. Like all Oscillatoriales, Planktothrix species have no heterocysts and no akinetes. Planktothrix are unique because they have trichomes and contain gas vacuoles unlike typical planktonic organisms. Previously, some species of the taxon were grouped within the genus Oscillatoria, but recent work has defined Planktothrix as its own genus. A tremendous body of work on Planktothrix ecology and physiology has been done by Anthony E. Walsby, and the 55.6 kb microcystin synthetase gene which gives these organisms the ability to synthesize toxins has been sequenced. P. agardhii is an example of a type species of the genus. P. agardhii and P. rubescens are commonly observed in lakes of the Northern Hemisphere where they are known producers of potent hepatotoxins called microcystins.

Raphidiopsis raciborskii is a freshwater cyanobacterium.)

Trichodesmium erythraeum is a species of cyanobacteria that are unique in being visible to the naked eye. This species is also known as "sea sawdust". It was originally discovered in 1770 by Captain Cook off the coast of Australia.

<span class="mw-page-title-main">Susie Wood</span> New Zealand microbiologist and marine scientist

Susanna Wood is a New Zealand scientist whose research focuses on understanding, protecting and restoring New Zealand's freshwater environments. One of her particular areas of expertise is the ecology, toxin production, and impacts of toxic freshwater cyanobacteria in lakes and rivers. Wood is active in advocating for the incorporation of DNA-based tools such as metabarcoding, genomics and metagenomics for characterising and understanding aquatic ecosystems and investigating the climate and anthropogenic drivers of water quality change in New Zealand lakes. She has consulted for government departments and regional authorities and co-leads a nationwide programme Lakes380 that aims to obtain an overview of the health of New Zealand's lakes using paleoenvironmental reconstructions. Wood is a senior scientist at the Cawthron Institute. She has represented New Zealand in cycling.

Aphanizomenon ovalisporum is a filamentous cyanobacteria present in many algal blooms.

Helle Ploug is marine scientist known for her work on particles in seawater. She is a professor at the University of Gothenburg, and was named a fellow of the Association for the Sciences of Limnology and Oceanography in 2017.

References

  1. "Phycokey - Aphanizomenon". cfb.unh.edu. Retrieved 2021-04-22.
  2. "Life History and Ecology of Cyanobacteria". ucmp.berkeley.edu. Retrieved 2021-04-27.
  3. Konopka, A.; T. D. Brock; A. E. Walsby (1978). "Buoyancy regulation by planktonic blue-green algae in Lake Mendota, Wisconsin". Arch. Hydrobiol. 83: 524–537.
  4. Yehonathan Bar-Yosef; Assaf Sukenik; Ora Hadas; Yehudit Viner-Mozzini & Aaron Kaplan (2010). "Enslavement in the Water Body by Toxic Aphanizomenon ovalisporum, Inducing Alkaline Phosphatase in Phytoplanktons". Current Biology. 20 (17): 1557–1561. doi: 10.1016/j.cub.2010.07.032 . PMID   20705465.
  5. Mullineaux, Conrad W. (2014-01-21). "Electron transport and light-harvesting switches in cyanobacteria". Frontiers in Plant Science. 5: 7. doi: 10.3389/fpls.2014.00007 . ISSN   1664-462X. PMC   3896814 . PMID   24478787.
  6. Adam, B.; Klawonn, I.; Svedén, J. B.; Bergkvist, J.; Nahar, N.; Walve, J.; Littmann, S.; Whitehouse, M. J.; Lavik, G.; Kuypers, M. M.; Ploug, H. (2015). "N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community". The ISME Journal. 10 (2): 450–459. doi:10.1038/ismej.2015.126. PMC   4737936 . PMID   26262817.
  7. Ploug, Helle; Musat, Niculina; Adam, Birgit; Moraru, Christina L.; Lavik, Gaute; Vagner, Tomas; Bergman, Birgitta; Kuypers, Marcel M. M. (2010). "Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea". The ISME Journal. 4 (9): 1215–1223. doi: 10.1038/ismej.2010.53 . PMID   20428225.
  8. "Bacterial Bloom, Cloudy Water, Ammonia/Nitrite Spike - What do I do?". the fishroom. 2019-12-09. Retrieved 2021-04-27.
  9. US EPA, OW (2013-06-03). "Harmful Algal Blooms". US EPA. Retrieved 2021-05-10.
  10. "Cyanobacteria/Cyanotoxins". US EPA. 2015. Archived from the original on 2015-10-17. Retrieved 2015-10-25.
  11. "Aphanizomenon (cyanoScope) · iNaturalist". iNaturalist. Retrieved 2021-04-27.
  12. Minnesota Department of Health. "Anatoxin-a and Drinking Water" (PDF). Archived (PDF) from the original on 2020-10-20. Retrieved 2021-05-07.
  13. "Saxitoxin - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-05-08.
  14. "Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex" (PDF). American Society of Limnology and Oceanography Special Symposium No. 3: 299-304. 1980.

Guiry, M.D.; Guiry, G.M. "Aphanizomenon". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway.