This article needs additional citations for verification .(May 2011) |
The pedal is the part of a bicycle that the rider pushes with their foot to propel the vehicle. It provides the connection between the cyclist's foot or shoe and the crank allowing the leg to turn the bottom bracket spindle and propel the bicycle's wheels. A pedal usually consists of a spindle that threads into the end of the crank, and a body on which the foot rest is attached, that is free to rotate on bearings with respect to the spindle.
Pedals were initially attached to cranks connecting directly to the driven (usually front) wheel. The safety bicycle, as it is known today, came into being when the pedals were attached to a crank driving a sprocket that transmitted power to the driven wheel by means of a roller chain.[ citation needed ]
Just as bicycles come in many varieties, there are different types of pedals to support different types of cycling.
Traditionally, platform pedals were pedals with a relatively large flat area for the foot to rest on, in contrast to the quill pedal which had very little surface area.
One form of the platform pedal had a large flat top area and flat bottom for use with toe clips and toe straps. They were designed for greater comfort when using shoes with less than rigid soles. They typically had a smaller cutaway underside giving greater cornering clearance, which was often needed for track cycling. They were often marketed as being more aerodynamic than conventional quill pedals.[ citation needed ]
Attaching the shoes to the pedals gives the user more control over the pedal movements. There are two methods for attaching a cyclist's shoes to their pedals: toe clips – a basket-and-strap device which hold the foot in place – and so-called clipless pedals, where specialized shoes with built-in bindings attach to compatible pedals.
In mountain biking (MTB) and BMX, platform pedals typically refer to any flat pedal without a cage. BMX riders typically use plastic pedals made of nylon, polycarbonate, or carbon reinforced plastic, although aluminum alloy and magnesium are not uncommon pedal body materials. Mountain bikers tend to use aluminum or magnesium because of the necessary use of metal studs to offer grip while the pedals are wet, muddy and slippery.[ citation needed ] BMXers tend to prefer platforms to cage pedals because they offer more support and grip for flexible "skate" shoes by using short metal studs. Cage pedals are more popular in the low end mountain bike range. In general, cage pedals are uncommon in all types of biking, although there is a niche market within mountain biking.[ citation needed ]
Platform pedals are available in a wide variety of types and prices, ranging from disposable plastic units used for test rides on new bicycles to high-end downhill models. Budget models may be made of steel or aluminum and incorporate reflectors for safer riding on streets at night, in addition to complying with some traffic laws. Less expensive platform pedals are generally considered disposable and cannot be rebuilt when worn out.
More expensive platform pedals for the mountain bike market are available with replaceable metal traction pins and cartridge bearings. Lightweight pedals intended for freeride and downhill cycling have been made from exotic metals such as magnesium.
Toe clips typically are generally not installed on this type of pedal because they are considered unsafe by some MTB and BMX riders.[ who? ] In downhill racing, the extra power and grip offered by clipped pedals is used at the risk of clipped in crashing in which the bicycle can potentially stay attached to the foot of the victim. However, fixed gear riders have started using fabric straps instead.
The quill pedal is a common pedal system on bicycles. It consists of a main axle section that is attached to the bicycle crank arm and contains extensions from the axle to which parallel cage plates are attached at the front and rear of the pedal. To use the quill pedal, the cyclist pushes his foot against the platform formed by the parallel cage plates. [1]
To improve the performance of the quill pedal toe clips were added. The toe clip is a thin metal or plastic attachment to the front cage of the pedal. The toe clip is shaped like the toe of a shoe and its function is to prevent a cyclist's shoe from slipping off the pedal during the forward pedaling motion. [1] A further enhancement of the quill pedal was modifying the toe clip to allow a strap and buckle to go around or through both the pedal and the toe clip to encircle the cyclist's foot on the top of the pedal. [1] This strap is generally made of leather or nylon.
To further improve the quill pedal's efficiency a "cleat" was developed. This cleat consists of a small metal or plastic attachment to the cyclist's shoe. The cleat is slotted and is adapted to engage a quill section of the bicycle pedal. The use of the slotted cleat enhances a cyclist's ability over that provided by toe clips and strap, enabling for greater pedaling efficiency. [1] Although quill pedals can be used with smoothed-soled cycling shoes or ordinary shoes, they were designed to be used with cycling shoes which had a slotted shoeplate attached to its sole. The disadvantage with this system is that to remove the shoe from the pedal a rider had to reach down and loosen the strap by hand or leave the toe strap loose and thus give up some efficiency. This type of pedal and pedal setup was common for racing cyclists until the mid to late 1980s.[ citation needed ]
Quill pedals are sometimes said to be named for the quill or "pick up tab" on the rear of the pedal. The weight of the toe clip and strap would make the pedal hang upside down, and the rider would tap the quill with their shoe to flip the pedal over so the shoe could be inserted into the pedal. [2]
The main difference between track, road, and touring quill pedals is width. Track pedals are narrow and the front and back plates of the cage are separate, road being a little wider with a one piece cage in a shape of a sideways "U", and touring being the widest to allow for comfort when used with wider, non-racing shoes during longer rides. While quill pedals can be used for mountain biking, the use of clips here is dangerous as they do not grip well. Cage pedals built for mountain biking are typically serrated so that even when muddied, the pedals can be gripped well by any flat shoe.
Clipless pedals (also clip-in or step-in) require a special cycling shoe with a cleat fitted to the sole, which locks into a mechanism in the pedal and thus holds the shoe firmly to the pedal. Most clipless pedals lock onto the cleat when stepped on firmly and unlock when the heel is twisted outward, although in some cases the locking mechanism is built into the cleat instead of the pedal. Clipless refers to the toe clip (cage) having been replaced by a locking mechanism and not to platform pedals which would normally not have toe clips. The clipless pedal was invented by Charles Hanson in 1895. [3] It allowed the rider to twist the shoe to lock and unlock and had rotational float (the freedom to rotate the shoe slightly to prevent joint strain). [4] The M71 was a clipless pedal designed by Cino Cinelli and produced by his company in 1971. It used a plastic shoe cleat which slid into grooves in the pedal and locked in place with a small lever located on the back side of the pedal body. To release the shoe a rider had to reach down and operate the lever, similar to the way a racing cyclist had to reach down and loosen the toestrap. The lever was placed on the outside edge of the pedal so that in the event of a fall the lever hitting the ground would release the foot. The pedal was designed for racing, in particular track racing, and because of the need to reach down to them to unclip, they have been referred to as "death cleats". [5] In 1984, the French company Look applied downhill snow skiing binding or cleat technology to pedals, producing the first widely used clipless pedals. Initially used by triathletes to facilitate faster "transitions",[ citation needed ] Bernard Hinault's victory in Tour de France in 1985 then helped secure the acceptance of quick-release clipless pedal systems by cyclists. Those pedals, and compatible models by other manufacturers, remain in widespread use today. The cleat is engaged by simply pushing down and forward on the pedal, or, with some designs, by twisting the cleat in sideways. Then, instead of loosening a toestrap or pulling a lever, the cyclist releases a foot from the pedal by twisting the heel outward.
The next major development in clipless pedals was Shimano's SPD (Shimano Pedaling Dynamics) pedal system. Whereas Look cleats are large and protrude from the sole of the shoe, SPD cleats are small and could be fitted in a recess in the sole, making it possible to walk (although comfort will vary, as the soles of different cycling shoes vary in their rigidity, depending on design). Cycling shoes have rigid soles to maximize power transfer and efficiency. They may be specific to road or mountain biking, or usable for both. Shoes designed for mountain biking typically have recessed cleats that do not protrude beyond the sole of the shoe, and have treads for walking on trails, as walking or carrying the bike is often required. Road cycling shoes are typically lighter than their mountain bike counterparts, and feature a protruding cleat and less weatherproofing. The protruding cleat makes these shoes impractical for walking, as doing so can damage the cleat. Mountain bike cleats can generally be mounted without difficulty to road shoes although sometimes an adapter is required. Such attachment is not usually possible for road pedals, as the cleats are normally too large to be mounted on mountain shoes. The smaller mountain bike cleats are attached to the sole of the shoe by two bolts; larger road-specific cleats are attached by three. Various manufacturers have produced their own designs of clipless pedal systems over the years.
Platform adapters are designed to temporarily convert clipless pedals into more traditional platform pedals which have a larger and flatter area for the foot to rest on. Clipless pedals can have advantages over flat ones, [6] [7] especially in mountain biking and racing. They keep the foot from slipping in wet and muddy conditions and provide better transfer of power. Clipless pedal platform adapters are innovative devices designed to convert regular platform pedals into a temporary clipless pedal system. These adapters provide cyclists with a bridge between traditional flat pedals and clipless pedals, allowing them to experiment with the benefits of clipless riding without immediately committing to dedicated clipless shoes. They can be fastened by using bolts but as they are normally in temporary use, it is also common for them to be mounted using different snap-on techniques. [8] Although it is possible to use clipless pedals with regular footwear, they will be much less comfortable than platform pedals, as the shoe sole is more likely to bend or slip. Despite wide usage, there is no proven advantage of clipless pedals over flat pedals in pedaling effectiveness, net mechanical efficiency, and muscular activity for both non-cyclists and elite cyclists. [9]
Float is defined as the degree of movement offered by the cleat within the pedal before release begins. This can be highly important to prevent damage to knees, as most people's legs do not remain in a single plane as they pedal. Many standard road pedal systems offer cleats with a six-degree float. SPD-SL, Look Delta, Look Kéo, and Time cleats are also available in three-degree and zero-degree float. Road pedal systems commonly colour-code cleats by the amount of float offered. Some pedal systems have a fixed (non-adjustable) float, such as six degrees for Crankbrothers and 4.5 degrees for the Kéo Easy. Most cleats develop more float as they wear. Clipless float pedals significantly attenuate the applied moment without reducing the power transmitted to the bike suggesting using float systems to reduce or prevent knee pain. [10]
Magnetic pedals were introduced as early as 1897, [11] and the Exus Mag Flux Road was available in 1996. [12] Norbert Sadler and Wolfgang Duerr filed for a patent in 2005, [13] and it has not been granted as of 2012. [13] Established bicycle component manufacturer, Mavic, introduced a magnetic pedal and dedicated shoe for casual riding in 2009. [14] Others have received mixed reviews. [15] [16] [ neutrality is disputed ]
To maximize compactness, folding bicycles often have pedals that fold as well.
The pedal spindle is threaded to match a threaded hole at the outboard end of the cranks. Multi-piece cranks have a 9⁄16-inch (14.29 mm) hole with 20 TPI (a diameter/pitch combination fairly unique to this application). One-piece cranks use a 1⁄2-inch (12.7 mm) by 20 TPI hole. French pedal spindles use M14 × 1.25 (14 mm (0.551 in) metric diameter with 1.25 mm (0.049 in) pitch) threads, and thread loosely into a 9/16 pedal hole. The threading size is often stamped into the crank, near the pedal hole.
The right-side (usually the drive-side) pedal spindle is right-hand threaded, and the left-side (usually the non-drive-side) pedal spindle is left-hand (reverse) threaded to help prevent it from becoming loose by an effect called precession. [17] [18]
Although the left pedal turns clockwise on its bearing relative to the crank (and so would seem to tighten a right-hand thread), the force from the rider's foot presses the spindle against the crank thread at a point which rolls around clockwise with respect to the crank, thus slowly pulling the outside of the pedal spindle anticlockwise (counterclockwise) because of friction, and thus would loosen a right-hand thread.
For a short time in the early 1980s, Shimano made pedals and matching cranks that had a 1-inch (25.4 mm) by 24 TPI interface. This was to allow a larger single bearing, as these pedals were designed to work with just one bearing on the crank side rather than the conventional design of one smaller bearing on each side. [19]
A bicycle, also called a pedal cycle, bike, push-bike or cycle, is a human-powered or motor-assisted, pedal-driven, single-track vehicle, with two wheels attached to a frame, one behind the other. A bicycle rider is called a cyclist, or bicyclist.
A tandem bicycle or twin is a form of bicycle designed to be ridden by more than one person. The term tandem refers to the seating arrangement, not the number of riders. Patents related to tandem bicycles date from the mid 1880s. Tandems can reach higher speeds than the same riders on single bicycles, and tandem bicycle racing exists. As with bicycles for single riders, there are many variations that have been developed over the years.
Shimano, Inc., originally Shimano Iron Works (島野鐵工所) and later Shimano Industries, Inc. (島野工業株式会社), is a Japanese multinational manufacturing company for cycling components, fishing tackle and rowing equipment, who also produced golf supplies until 2005 and snowboarding gear until 2008. Named after founder Shozaburo Shimano and headquartered in Sakai, Osaka Prefecture, the company has 32 consolidated and 11 unconsolidated subsidiaries, with the primary manufacturing plants based in Kunshan (China), Malaysia and Singapore.
The crankset or chainset is the component of a bicycle drivetrain that converts the reciprocating motion of the rider's legs into rotational motion used to drive the chain or belt, which in turn drives the rear wheel. It consists of one or more sprockets, also called chainrings or chainwheels attached to the cranks, arms, or crankarms to which the pedals attach. It is connected to the rider by the pedals, to the bicycle frame by the bottom bracket, and to the rear sprocket, cassette or freewheel via the chain.
The bottom bracket on a bicycle connects the crankset (chainset) to the bicycle and allows the crankset to rotate freely. It contains a spindle to which the crankset attaches, and the bearings that allow the spindle and crankset to rotate. The chainrings and pedals attach to the cranks. Bottom bracket bearings fit inside the bottom bracket shell, which connects the seat tube, down tube and chain stays as part of the bicycle frame.
Indoor cycling, often called spinning, is a form of exercise with classes focusing on endurance, strength, intervals, high intensity and recovery, and involves using a special stationary exercise bicycle with a weighted flywheel in a classroom setting. When people took cycling indoors in the late 19th century, whether for reasons of weather or convenience, technology created faster, more compact and efficient machines over time. The first iterations of the stationary bike ranged from the vertical Gymnasticon to regular bicycles on rollers.
A racing bicycle, also known as a road bike is a bicycle designed for competitive road cycling, a sport governed by and according to the rules of the Union Cycliste Internationale (UCI).
A cyclo-cross bike or cyclo-cross bicycle is a bicycle specifically designed for the rigors of a cyclo-cross race. Cyclo-cross bicycles roughly resemble the racing bicycles used in road racing. The major differences between the two are the frame geometry, and the wider clearances that cyclo-cross bikes have for their larger tires and mud and other debris that they accumulate.
A fixed-gear bicycle is a bicycle that has a drivetrain with no freewheel mechanism such that the pedals always will spin together with the rear wheel. The freewheel was developed early in the history of bicycle design but the fixed-gear bicycle remained the standard track racing design. More recently the "fixie" has become a popular alternative among mainly urban cyclists, offering the advantage of simplicity compared with the standard multi-geared bicycle.
The bunny hop (mountain biking) or bunnyhop is a bicycle trick typically used in mountain bikes or BMX bikes that allows the rider to launch their bike into the air as if jumping off a ramp. The pedals on the bicycle stick to the riders feet as the bike becomes airborne with the clipless pedals that have clips. The pedals on the bicycle seem to stick to the rider's feet as the bike becomes airborne, much like how a skateboard seems to stick to the feet of the skater performing an ollie. While the bunny hop can be quite challenging to learn, once mastered it gives riding opportunities for both BMX and mountain bike rider alike.
Due to the nature of triathlons as a race consisting of multiple sports many pieces of technical equipment have been borrowed from other sports, or developed specifically in an effort to race faster and improve a competitors safety.
The track stand or standstill is a technique that bicycle riders can use to maintain balance while their bicycle remains stationary or moves only minimal distances. The technique originated in track cycling and is now used by other types of cyclists wishing to stop for a short time without putting a foot on the ground, such as bike commuters at stop signs. To perform a track stand, a cyclist holds the cranks in an approximately horizontal position with the front wheel steered to the left or right, and pedals forward, and back in the case of a fixed-gear bicycle, which the steered front wheel converts into a side-to-side motion.
Sports equipment, sporting equipment, also called as sporting goods, are the tools, materials, apparel, and gear used to compete in a sport and varies depending on the sport. The equipment ranges from balls, nets, and protective gear like helmets. Sporting equipment can be used as protective gear or a tool used to help the athletes play the sport. Over time, sporting equipment has evolved because sports have started to require more protective gear to prevent injuries. Sporting equipment may be found in any department store or specific sporting equipment shops.
Shimano Pedaling Dynamics, commonly called SPD, is a design of clipless bicycle pedals and associated cleats first released by Shimano in 1990. The first model, PD-M737, was aimed at mountain biking enthusiasts who, prior to this, had to use toe clips and straps or "road" clipless pedals which clogged with mud and made walking very difficult in unrideable situations.
Cycling shoes are shoes purpose-built for cycling. There are a variety of designs depending on the type and intensity of the cycling for which they are intended. Key features include rigidity, for more-efficient transfer of power from the cyclist to the pedals, weight, a method of attaching the shoe firmly to the pedal and adaptability for use on and off the bicycle. Most high-performance cycling shoes can be adjusted while in use, via a quick-adjusting system that has largely replaced laces.
A police bicycle is a bicycle used by police forces, most commonly in the form of a mountain bicycle, used to patrol areas inaccessible to police cars or cover a wider area than an officer on foot.
Cleats or studs are protrusions on the sole of a shoe or on an external attachment to a shoe that provide additional traction on a soft or slippery surface. They can be conical or blade-like in shape and can be made of plastic, rubber or metal. The type worn depends on the environment of play: grass, ice, artificial turf, or other grounds.
The following outline is provided as an overview of and topical guide to bicycles:
In competitive cycling, the kit is the standard equipment and attire worn specifically by athletes participating in the sport. The outfits differ from the clothes worn in other forms of cycling, such as commuting and recreational cycling. Competitive kit uses technical and performance materials and features to improve efficiency and comfort. The UCI specify the kit and the design the riders use.
1897: Tudor invents first magnetic clipless pedal.
Exus Mag Flux Road 1996, Taiwan, Foot is secured by a powerful earth magnet
...unlimited relative movement, in particular, in rotation, between the bicycle shoe and the pedal, without causing undesired separation of the magnetic non-positive connection.
EZ-Ride Evolve pedals are fantastic if you consider what they're designed to do.
I'm not going to beat around the bush, these pedals suck
We agree, and we see the exact same problem with this version from Proton Locks. While it has a big advantage over the Mavic EZ-Ride pedals in that it comes with magnetic plates to bolt onto your own shoes, rather than requiring you buy a specially made pair, it still suffers from a lack of locking.
Unscrewing occurs from precession, in which a round object rolling in a circular ring in one direction will itself turn in the opposite direction.
'Precession' refers to the tendency of a part subject to rotating stresses to rotate in the opposite direction of the stress rotation.