Broflanilide

Last updated
Broflanilide
Broflanilid.svg
Names
IUPAC name
3-[benzoyl(methyl)amino]-N-[2-bromo-4-(1,1,1,2,3,3,3-heptafluoropropan-2-yl)-6-(trifluoromethyl)phenyl]-2-fluorobenzamide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.214.739 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 688-148-8
KEGG
PubChem CID
UNII
  • InChI=1S/C25H14BrF11N2O2/c1-39(21(41)12-6-3-2-4-7-12)17-9-5-8-14(18(17)27)20(40)38-19-15(23(29,30)31)10-13(11-16(19)26)22(28,24(32,33)34)25(35,36)37/h2-11H,1H3,(H,38,40)
    Key: QSLZKWPYTWEWHC-UHFFFAOYSA-N
  • CN(C1=CC=CC(=C1F)C(=O)NC2=C(C=C(C=C2Br)C(C(F)(F)F)(C(F)(F)F)F)C(F)(F)F)C(=O)C3=CC=CC=C3
Properties
C25H14BrF11N2O2
Molar mass 663.285 g·mol−1
Hazards
GHS labelling:
GHS-pictogram-pollu.svg
Warning
H410
P273, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Broflanilide is a complex, polycyclic, organohalogen insecticide which provides a novel mode of action (MoA).

Contents

Mode of action

Upon its discovery by Mitsui Chemicals, Insecticide Resistance Action Committee (IRAC) created the new MoA Group 30 for Broflanilide. [1] [2] [3] [4] Broflanilide is a meta-diamide GABA-gated Cl channel allosteric modulator. [1] [2] [3] [4] This - along with isoxazolines providing the same MoA, so far only fluxametamide - constitute the new MoA Group 30 in the IRAC classification scheme. [3]

Advantages

Environmental Hazards

The EPA has stated that Broflanilide is "Likely to be Carcinogenic to Humans". [5]

Broflanilide meets the EPA Working Definition of PFAS. Note that "EPA considers any level of PFAS to be potentially toxicologically significant". [6]

Products

Products were registered in the United States in January, 2021, [7] and in Canada. [1] It is being sold under the brand names Cimegra (BASF) [8] and Teraxxa (BASF, the seed treatment form). [9]

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Lindane</span> Organochlorine chemical and an isomer of hexachlorocyclohexane

Lindane, also known as gamma-hexachlorocyclohexane (γ-HCH), gammaxene, Gammallin and benzene hexachloride (BHC), is an organochlorine chemical and an isomer of hexachlorocyclohexane that has been used both as an agricultural insecticide and as a pharmaceutical treatment for lice and scabies.

Chloropicrin, also known as PS and nitrochloroform, is a chemical compound currently used as a broad-spectrum antimicrobial, fungicide, herbicide, insecticide, and nematicide. It was used as a poison gas in World War I. Its chemical structural formula is Cl3C−NO2.

<span class="mw-page-title-main">Fipronil</span> Chemical compound

Fipronil is a broad-spectrum insecticide that belongs to the phenylpyrazole chemical family. Fipronil disrupts the insect central nervous system by blocking the ligand-gated ion channel of the GABAA receptor and glutamate-gated chloride (GluCl) channels. This causes hyperexcitation of contaminated insects' nerves and muscles. Fipronil's specificity towards insects is believed to be due to its greater binding affinity for the GABAA receptors of insects than to those of mammals, and for its action on GluCl channels, which do not exist in mammals. As of 2017, there does not appear to be significant resistance among fleas to fipronil.

In pharmacology and biochemistry, mode of action (MoA) describes a functional or anatomical change, resulting from the exposure of a living organism to a substance. In comparison, a mechanism of action (MOA) describes such changes at the molecular level.

Acibenzolar-<i>S</i>-methyl Chemical compound

Acibenzolar-S-methyl is the ISO common name for an organic compound that is used as a fungicide. Unusually, it is not directly toxic to fungi but works by inducing systemic acquired resistance, the natural defence system of plants.

Neonicotinoids are a class of neuro-active insecticides chemically similar to nicotine, developed by scientists at Shell and Bayer in the 1980s.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Clothianidin</span> Chemical compound

Clothianidin is an insecticide developed by Takeda Chemical Industries and Bayer AG. Similar to thiamethoxam and imidacloprid, it is a neonicotinoid. Neonicotinoids are a class of insecticides that are chemically similar to nicotine, which has been used as a pesticide since the late 1700s. Clothianidin and other neonicotinoids act on the central nervous system of insects as an agonist of nAChR, the same receptor as acetylcholine, the neurotransmitter that stimulates and activating post-synaptic acetylcholine receptors but not inhibiting AChE. Clothianidin and other neonicotinoids were developed to last longer than nicotine, which is more toxic and which breaks down too quickly in the environment.

<span class="mw-page-title-main">Cyfluthrin</span> Chemical compound

Cyfluthrin is a pyrethroid insecticide and common household pesticide. It is a complex organic compound and the commercial product is sold as a mixture of isomers. Like most pyrethroids, it is highly toxic to fish and invertebrates, but it is far less toxic to humans. It is generally supplied as a 10–25% liquid concentrate for commercial use and is diluted prior to spraying onto agricultural crops and outbuildings.

<span class="mw-page-title-main">Tefluthrin</span> Synthetic pyrethroid used as insecticide

Tefluthrin is the ISO common name for an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as tefluthrin are often preferred as active ingredients in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. It is effective against soil pests because it can move as a vapour without irreversibly binding to soil particles: in this respect it differs from most other pyrethroids.

<span class="mw-page-title-main">Terbufos</span> Chemical compound

Terbufos is a chemical compound used in insecticides and nematicides. It is part of the chemical family of organophosphates. It is a clear, colourless to pale yellow or reddish-brown liquid and sold commercially as granulate.

Ryanoids are a class of insecticides which share the same mechanism of action as the alkaloid ryanodine. Ryanodine is a naturally occurring insecticide isolated from Ryania speciosa.

<span class="mw-page-title-main">Sulfoxaflor</span> Chemical compound

Sulfoxaflor, also marketed as Isoclast, is a systemic insecticide that acts as an insect neurotoxin. A pyridine and a trifluoromethyl compound, it is a member of a class of chemicals called sulfoximines, which act on the central nervous system of insects.

<span class="mw-page-title-main">Cyantraniliprole</span> Chemical compound

Cyantraniliprole is an insecticide of the ryanoid class, specifically a diamide insecticide. It is approved for use in the United States, Canada, China, and India. Because of its uncommon mechanism of action as a ryanoid, it has activity against pests such as Diaphorina citri that have developed resistance to other classes of insecticides.

<span class="mw-page-title-main">Fluxapyroxad</span> Chemical compound

Fluxapyroxad is a broad-spectrum pyrazole-carboxamide fungicide used on a large variety of commercial crops. It stunts fungus growth by inhibiting the succinate dehydrogenase (SQR) enzyme. Application of fluxapyroxad helps prevent many wilts and other fungal infections from taking hold. As with other systemic pesticides that have a long chemical half-life, there are concerns about keeping fluxapyroxad out of the groundwater, especially when combined with pyraclostrobin. There is also concern that some fungi may develop resistance to fluxapyroxad.

The Insecticide Resistance Action Committee (IRAC) was formed in 1984 and works as a specialist technical group of the industry association CropLife to be able to provide a coordinated industry response to prevent or delay the development of insecticide resistance in insect and mite pests. IRAC strives to facilitate communication and education on insecticide and traits resistance as well as to promote the development and facilitate the implementation of insecticide resistance management strategies.

<span class="mw-page-title-main">Flupyradifurone</span> Chemical compound

Flupyradifurone is a systemic butenolide insecticide developed by Bayer CropScience under the name Sivanto. Flupyradifurone protects crops from sap-feeding pests such as aphids and is safer for non-target organisms compared to other insecticides. Sivanto was launched in 2014 since it obtained its first commercial registration in central America. Insecticide Resistance Action Committee (IRAC) classified Flupyradifurone as 4D subset (butenolide) and it is the first pesticide in the butenolide category. It was approved by European Union in 2015.

References

  1. 1 2 3 4 BASF AgSolutions CA (Feb 16, 2021). Wireworm Manamgent Strategies. Youtube. Canada.
  2. 1 2 IRAC Mode of Action Classification, Annex 6, 2018
  3. 1 2 3 "IRAC Mode of Action Classification Scheme Version 9.4". IRAC (Insecticide Resistance Action Committee) (pdf). March 2020.
  4. 1 2 Katsuta, Hiroyuki; Nomura, Michikazu; Wakita, Takeo; Daido, Hidenori; Kobayashi, Yumi; Kawahara, Atsuko; Banba, Shinichi (2019-05-20). "Discovery of broflanilide, a novel insecticide". Journal of Pesticide Science . 44 (2). Pesticide Science Society of Japan: 120–128. doi:10.1584/jpestics.d18-088. ISSN   1348-589X. PMC   6529746 . PMID   31148938. S2CID   133133494.
  5. "Broflanilide; Pesticide Tolerances". EPA. Retrieved 16 November 2021.
  6. "Per- and Polyfluoroalkyl Substances (PFAS) in Pesticide Packaging". EPA. 13 January 2021. Retrieved 15 November 2021.
  7. "New Active Ingredient Broflanilide". EPA. Retrieved 16 November 2021.
  8. "Cimegra® - Product Profile". BASF Agriculture Western Canada. BASF Canada. 2021-03-10. Retrieved 2021-03-10.
  9. "Teraxxa™ and Teraxxa™ F4 Seed Treatments". BASF Agriculture US. BASF US. Retrieved 2021-03-10.