Browder fixed-point theorem

Last updated

The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point.

Contents

History

Following the publication in 1965 of two independent versions of the theorem by Felix Browder and by William Kirk, a new proof of Michael Edelstein showed that, in a uniformly convex Banach space, every iterative sequence of a non-expansive map has a unique asymptotic center, which is a fixed point of . (An asymptotic center of a sequence , if it exists, is a limit of the Chebyshev centers for truncated sequences .) A stronger property than asymptotic center is Delta-limit of Teck-Cheong Lim, which in the uniformly convex space coincides with the weak limit if the space has the Opial property.

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself, there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.

In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number such that for all x and y in M,

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

In mathematics, the Banach fixed-point theorem is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In mathematics, a number of fixed-point theorems in infinite-dimensional spaces generalise the Brouwer fixed-point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations.

The Schauder fixed-point theorem is an extension of the Brouwer fixed-point theorem to topological vector spaces, which may be of infinite dimension. It asserts that if is a nonempty convex closed subset of a Hausdorff topological vector space and is a continuous mapping of into itself such that is contained in a compact subset of , then has a fixed point.

In mathematics, uniformly convex spaces are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936.

In mathematics, the Opial property is an abstract property of Banach spaces that plays an important role in the study of weak convergence of iterates of mappings of Banach spaces, and of the asymptotic behaviour of nonlinear semigroups. The property is named after the Polish mathematician Zdzisław Opial.

In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem, is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

In mathematics, the Markov–Kakutani fixed-point theorem, named after Andrey Markov and Shizuo Kakutani, states that a commuting family of continuous affine self-mappings of a compact convex subset in a locally convex topological vector space has a common fixed point. This theorem is a key tool in one of the quickest proofs of amenability of abelian groups.

In mathematics, Kostant's convexity theorem, introduced by Bertram Kostant, states that the projection of every coadjoint orbit of a connected compact Lie group into the dual of a Cartan subalgebra is a convex set. It is a special case of a more general result for symmetric spaces. Kostant's theorem is a generalization of a result of Schur (1923), Horn (1954) and Thompson (1972) for hermitian matrices. They proved that the projection onto the diagonal matrices of the space of all n by n complex self-adjoint matrices with given eigenvalues Λ = is the convex polytope with vertices all permutations of the coordinates of Λ.

In mathematics, Delta-convergence, or Δ-convergence, is a mode of convergence in metric spaces, weaker than the usual metric convergence, and similar to the weak convergence in Banach spaces. In Hilbert space, Delta-convergence and weak convergence coincide. For a general class of spaces, similarly to weak convergence, every bounded sequence has a Delta-convergent subsequence. Delta convergence was first introduced by Teck-Cheong Lim, and, soon after, under the name of almost convergence, by Tadeusz Kuczumow.

This is a glossary for the terminology in a mathematical field of functional analysis.

In mathematics, particularly in functional analysis, the closed graph theorem is a result connecting the continuity of a linear operator to a topological property of their graph. Precisely, the theorem states that a linear operator between two Banach spaces is continuous if and only if the graph of the operator is closed.

References